Zusammenfassung zu Numerische Mathematik II

Sara Adams

11. August 2004

Diese Zusammenfassung basiert auf der Vorlesung Numerische Mathematik II gehalten im Sommersemester 2004 von Prof. Martin Buhmann (Ph.D.) an der Justus-Liebig Universität Gießen

1

Sara Adams Zusammenfassung zu Numerische Mathematik II - SS 2004

2

Inhaltsverzeichnis

Ι	Gewöhnliche Differentialgleichungen	3
1	Vorbemerkungen	3
2	Die ϑ -Methode 2.1 Eulersche Methode (Vorwärts-Euler)	4 4
3	Allgemeine Mehrschrittverfahren 3.1 Adam-Bashforth-Methoden 3.2 Definition und Ordnung 3.3 Konvergenz und die Dahlquist-Sätze 3.4 BDF-Formeln	4 4 5 5 5
4	Runge-Kutta-Verfahren 4.1 explizite Runge-Kutta-Verfahren	5 6 7
5	Steife Differentialgleichungen5.1Definitionen.5.2A-Stabilität von MSV.5.3Dissipativität.5.4A-Stabilität von Runge-Kutta-Verfahren.	7 7 7 8 8
6	Schrittweitensteuerung	8
7	Methode nach Milne	8
8	Zadunaiskys Methode	9
9	Prädiktor-Korrektor-Verfahren	9
II	Lösung dünn besetzter, großer linearer Gleichungssysteme	9
10	Cholesky-Verfahren 10.1 Matrizen und Bäume	10 10
11	Iterative Verfahren11.1 Jacobi und Gauss-Seidel11.2 SOR-Verfahren11.3 CG-Verfahren	10 11 11 12
ΙΙ	I Mehrdimensionale Splines	13
12	Wiederholung eindimensionale Splines	13

13 Tensorprodukt	14
14 Splines von totalem Grad k	14
15 Box-Splines	14
16 Polynome im Box-Spline-Raum $S_{X,k}$	15
17 Interpolation durch Box-Splines: Lagrange-Darstellung	16

Teil I

Gewöhnliche Differentialgleichungen

1 Vorbemerkungen

Aufgabenstellung

Problem: Finde eine Funktion $y:[t_0,\infty)\to\mathbb{R}^n$ diffbar mit $y'=f(t,y),\quad t\geq t_0,\quad f:[t_0,\infty)\times\mathbb{R}^n\to\mathbb{R}^n,\quad \text{Anfangswert }y(t_0)=y_0$ (1)

- Lipschitzbedingung: $\exists \lambda > 0$: $||f(t,y) f(t,x)|| \le \lambda \cdot ||x-y|| \quad \forall x,y \in \mathbb{R}^n$
- \bullet ferfüllt die Lipschitzbedingung \Rightarrow (1) besitzt eine eindeutige Lösung (fanalytisch \Rightarrow yanalytisch)
- Satz von Peano: Seien $a, b > 0, U \subset \mathbb{R}^n$ eine Umgebung, $f: [0, a] \times U \to \mathbb{R}^n$ stetig in $M = \{(t, x) : t \in [0, a], x \in \mathbb{R}^n, ||x y_0|| \leq b\}$. Dann hat (1) eine Lösung y in $[0, \min(a, \frac{x}{u})]$, wobei $\mu = \max_{(t, x) \in M} ||f(t, x)||$
- ullet Satz von Picard-Lindelöf: Gilt die Lipschitzbedingung für f, so ist die Lösung aus dem Satz von Peano eindeutig.

Definitionen

• Seien für h > 0 $y_{j,h} \approx y(t_j)$ die Näherung an die analytische Lösung y. Eine Methode zur Lösung von (1) heißt **konvergent**, falls

$$\lim_{h \to 0} \max_{i: ih \le t^*} ||y_{j,h} - y(t_j)|| = 0$$

für alle Lipschitz-stetigen f und für alle $t^* > 0$

- Der Fehler, der entsteht, wenn $y(t_k)$ usw. statt y_k in eine numerische Methode eingesetzt wird, heißt lokaler Diskretisierungsfehler (LDF).
- Ist der LDF $O(h^{p+1})$, so ist die Methode von der **Ordnung** p.

Im Folgenden setzen wir voraus, dass f die Lipschitzbedingung erfüllt.

2 Die ϑ -Methode

$$y_{k+1} = y_k + h(\vartheta f(t_k, y_k) + (1 - \vartheta) f(t_{k+1}, y_{k+1})) \qquad 0 \le \vartheta \le 1$$

- $\vartheta = 0$ Vorwärts-Euler (explizites Verfahren)
- $\vartheta = \frac{1}{2}$ Trapezregel (implizites Verfahren)
- $\vartheta = 1$ Rückwärts-Euler (implizites Verfahren)
- Die ϑ -Methode ist min. von Ordnung 1.

2.1 Eulersche Methode (Vorwärts-Euler)

$$y_{k+1} = y_k + h \cdot f(t_k, y_k)$$
 $t_k = t_0 + kh$

- Die Eulersche Methode konvergiert.
- Die Eulersche Methode ist vor Ordnung 1.

2.2 Trapezregel

$$y_{k+1} = y_k + \frac{h}{2} (f(t_k, y_k) + f(t_{k+1}, y_{k+1}))$$
 $k \in \mathbb{N}_0$

- Die Trapezregel konvergiert.
- Die Trapezregel ist von Ordnung 2.

3 Allgemeine Mehrschrittverfahren

3.1 Adam-Bashforth-Methoden

$$y_{k+s} = y_{k+s-1} + h \sum_{m=0}^{s-1} f(t_{k+m}, y_{k+m}) \cdot b_m, \qquad b_m = \frac{1}{h} \int_{t_{k+s-1}}^{t_{k+s}} p_m(\vartheta) d\vartheta,$$

wobei p_m die üblichen Lagrangefunktionen sind:

$$p_m(t) = \prod_{l=0, l \neq m}^{s-1} \frac{t - t_{k+l}}{t_{k+m} - t_{k+l}}$$

- Für s = 1 ergibt sich die Eulersche Methode (Vorwärts-Euler)
- Die Adam-Bashforth-Methoden sind von Ordnung s.

3.2 Definition und Ordnung

Allgemeine MSV:
$$\sum_{m=0}^{s} a_m y_{k+m} = h \sum_{m=0}^{s} b_m f(t_{k+m}, y_{k+m}) \quad \text{o.E. } a_s = 1$$

- Für $b_s = 0$ sind die Verfahren explizit, für $b_s \neq 0$ implizit.
- $\varrho(\omega) := \sum_{m=0}^{s} a_m \omega^m$
- $\sigma(\omega) := \sum_{m=0}^{s} b_m \omega^m$
- Die Mehrschrittmethode hat Ordnung $p \ge 1$ genau dann, wenn es ein $c \ne 0$ gibt mit:

$$\varrho(\omega) - \sigma(\omega)\log(\omega) = c \cdot (\omega - 1)^{p+1} + O(|1 - \omega|^{p+2}) \qquad \omega \to 1$$

3.3 Konvergenz und die Dahlquist-Sätze

- Wurzelbedingung: Polynom erfüllt die Wurzelbedingung : \Leftrightarrow alle Wurzeln liegen in $B_1(0) = \{z \in \mathbb{C} : |z| \le 1\}$, alle Wurzeln auf dem Einheitskreis sind einfach
- Dahlquist-Äquivalenzsatz: Konvergieren die Fehler in den Startvektoren $y_1, ..., y_{s-1}$ des MSV gegen 0, so gilt: das MSV konvergiert \Leftrightarrow Ordnung ≥ 1 , ϱ erfüllt die Wurzelbedingung
- Erste Dahlquist-Schranke: konvergentes, explizites (bzw. implizites) s-MSV \Rightarrow Ordnung $\leq s$ (bzw. $2\lfloor \frac{s}{2} + 1 \rfloor$)

3.4 BDF-Formeln

"backward differentiation formula":

$$\sum_{m=0}^{s} a_m y_{m+k} = h\beta f(t_{k+s}) \qquad \left(\varrho(\omega) = \sum_{m=0}^{s} a_m \omega^m \qquad \sigma(\omega) = \beta \omega^s\right)$$

- Die BDF-Formel hat Ordnung s, falls $\beta = (\sum_{m=1}^{s} \frac{1}{m})^{-1}$, $\varrho(\omega) = \beta \sum_{m=1}^{s} \frac{1}{m} \omega^{s-m} (\omega 1)^m$
- $\varrho(\omega)=\beta\sum_{m=1}^s\frac{1}{m}\omega^{s-m}(\omega-1)^m$ erfüllt Wurzelbedingung $\Leftrightarrow s\leq 6$

4 Runge-Kutta-Verfahren

$$y' = f(t, y), \quad y(t_0) = y_0$$
$$y(t) = y(t_0) + \int_{t_0}^{t} g(\tau, y(\tau)) d\tau$$

Bei Runge-Kutta-Verfahren benutzt man Quadraturformeln, um das Integral anzunähern. Spezialfall: Einsetzen der Gauß-Quadratur

• Orthogonale Polynome

Sei λ ein absolutstetiges Maß über \mathbb{R} , d.h. $d(\lambda(t)) = \begin{cases} \omega(t) dt & t \in [a, b] \\ 0 & \text{sonst} \end{cases}$, ω integrierbar,

insb. $\int_a^b t^n \omega(t) dt < \infty \ \forall n \in \mathbb{N}, \ \omega \ge 0.$

Definiere das **innere Produkt** $(u, v)_{\lambda} = \int_{\mathbb{R}} uv d\lambda = \int_{a}^{b} uv \, \omega dt$

Orthogonalität: $u \perp v :\Leftrightarrow (u, v)_{\lambda} = 0$

Die **orthogonalen Polynome** $\pi_n \in \mathbb{P}_n$ sind durch die folgenden Bedingungen eindeutig bestimmt:

- $-\pi_n \perp \pi_m \quad \forall m \neq n, m, n \in \mathbb{N}$
- $-(\pi_n,\pi_n)_{\lambda}=1$ $n\in$

Beispiele: Jacobipolynome auf [-1,1]

$$\omega(t) = (1-t)^{\alpha}(1-t)^{\beta}, \quad \alpha, \beta > -1$$

- Chebyshev-Polynome $\alpha = \beta = \frac{1}{2} \quad (T_n(x) = \cos(n \arccos x))$
- Legendre-Polynome $\alpha = \beta = 0$
- Gegenbauer-Polynome $\alpha = \beta$
- Alle m Nullstellen eines orthogonalen Polynoms liegen im Intervall (a, b) und sind einfach.
- Die Quadraturformel

$$\int_{a}^{b} f(t) d\lambda(t) = \sum_{n=1}^{n} \lambda_{k} f(\tau_{k}) + R_{n}(f)$$

erfüllt $R_n(p) = 0 \quad \forall p \in \mathbb{P}_{n-1+m} \iff [\text{interpoliert für } Grad < n] \land [q(t) = \prod_{j=1}^n (t - t_j), \int_a^b q(t)p(t)d\lambda(t) = 0 \quad \forall p \in \mathbb{P}_{m-1}]$

4.1 explizite Runge-Kutta-Verfahren

$$k_1 = y_n, \quad k_s = y_n + h \sum_{i=1}^{s-1} a_{si} f(t_n + c_j h, k_i), \ s > 1$$

$$y_{n+1} = y_n + h \sum_{i=1}^m b_j f(t_n + c_j h, k_j)$$

Beispiele mit $c_1 = 0$:

- Verfahren von Runge: m = 2, $c_2 = \frac{1}{2}$, $a_{21} = \frac{1}{2}$, $b_1 = 0$, $b_2 = 1$ mit Ordnung 2 $[y_{n+1} = y_n + hf(t_n + \frac{h}{2}, y_n + \frac{h}{2}f(t_n, y_n))]$
- klassisches Runge-Kutta-Verfahren: $m=3, c_2=\frac{1}{2}, c_3=1, a_{21}=\frac{1}{2}, a_{31}=-1, a_{32}=2, b_1=b_2=\frac{1}{6}, b_2=\frac{2}{3}$ mit Ordnung 3
- Nystrom-Verfahren $m=3, c_2=c_3=\frac{2}{3}, a_{21}=\frac{2}{3}, a_{31}=0, a_{32}=\frac{2}{3}, b_1=\frac{1}{4}, b_2=b_3=\frac{3}{8}$ mit Ordnung 3

4.2 implizite Runge-Kutta-Verfahren (IRK)

$$k_{j} = y_{n} + h \cdot \sum_{i=1}^{\nu} a_{ji} \cdot f(t_{n} + c_{j}h, k_{i})$$
$$y_{n+1} = y_{n} + h \cdot \sum_{j=1}^{\nu} b_{j} \cdot f(t_{n} + c_{j}h, k_{j})$$

- Verfahren konsistent $\Rightarrow \sum_{i=1}^{\nu} a_{ji} = c_j \ \forall j$
- Kollokationsverfahren: Suche Polynom $u \in \Pi_{\nu}$: $u(t_n) = y_n$, $u'(t_n + c_j h) = f(t_n + c_j h, u(t_n + c_j h)) <math>\forall 1 \leq j \leq \nu$ $y_{n+1} := u(t_{n+1}) \approx y(t_{n+1})$
 - $c_1, ..., c_{\nu}$ gegeben, $q(t) = \prod_{j=1}^{\nu} (t c_j), \ q_l(t) = \frac{q(t)}{t c_l}$ $a_{ji} = \int_0^{c_j} \frac{q_i(t)}{q_i(c_i)} dt, \ b_j = \int_0^1 \frac{q_j(r)}{q_j(c_j)} d\tau, \quad j = 1, ..., \nu$
 - \Rightarrow Die Kollokationsmethode ist identisch zu dem IRK mit a_{ji}, b_{j}, c_{j}
 - Butcher-Tableau: $\begin{array}{c|c} c & A \\ \hline & b^T \end{array}$
 - $-c_i$ pw. verschieden, $\int_0^1 q(\tau)\tau^j\mathrm{d}\tau=0\ \forall j< m\leq\nu\Rightarrow$ Kollokationsmethode hat Ordnung $\nu+m$
- $T > 0, j \le \frac{T}{n}, y_0, ..., y_j$ errechnete Näherungen von $y' = f(t, y), y(0) = y_0, f$ Lipschitzstetig \Rightarrow Verfahren konvergiert mit Fehler $|y_i y(jh)| = O(h^{m+\nu})$

5 Steife Differentialgleichungen

5.1 Definitionen

- \bullet DG steif : \Leftrightarrow Lösung durch eine Standardmethode erfordert eine wesentliche Einschränkung der Schrittweite h
- \bullet Steifigkeitsverhältnis := Verhältnis vom größten zum kleinsten Eigenwert der Jacobimatrix von f
- Betrachte $y' = \lambda y, \ y(0) = 1, \ h$ Schrittweite $(y(t) = e^{\lambda t} \xrightarrow{t \to \infty} 0 \quad \forall \lambda : \Re(\lambda) < 0)$
 - Lineares Stabilitätsgebiet eines Verfahrens $\mathcal{D}:=\{\lambda h\in\mathbb{C}:\ y_k\stackrel{k\to\infty}{\longrightarrow}0\}$
- Numerisches Verfahren **A-stabil** : $\Leftrightarrow \mathcal{D} = \mathbb{C}_- = \{z \in \mathbb{C}: \Re(z) < 0\}$

5.2 A-Stabilität von MSV

- $\eta(z,w):=\sum_{m=0}^s(a_m-zb_m)w^m$ char. Polynom der Differenzengleichung $\sum_{m=0}^s(a_m-h\lambda b_m)y_{m+n}=0,\ w_1,...,w_{q(z)}$ die versch. Nullstellen mit Vielfachheit $k_1(z),...,k_{q(z)}(z)$: MSV A-stabil $\Leftrightarrow |w_i(z)|<1 \quad \forall z\in\mathbb{C}_-$
- MSV A-stabil $\Leftrightarrow b_s > 0, |w_j(it)| \le 1 \quad \forall t \in \mathbb{R}, j = 1, ..., q(it)$

8

- Satz von Cohn und Schur: Beide Nullstellen der quadratischen Gleichung $\alpha w^2 + \beta w + \gamma = 0$ sind in $\overline{B_1(0)} \Leftrightarrow |\alpha|^2 \geq |\gamma|^2, (|\alpha|^2 |\gamma|^2)^2 \geq |\alpha\overline{\beta} \beta\overline{\gamma}|^2, (\alpha = \gamma \neq 0 \Rightarrow |\beta| \leq 2\alpha)$
- Die Trapezregel und das 2-Schritt BDF-Verfahren sind A-stabil, das Eulerverfahren ist nicht A-stabil.
- 2. Dahlquist-Schranke: Die maximale Ordnung eines A-stabilen MSV ist 2.

5.3 Dissipativität

 $y' = f(t, y), \ y(0) = y_0 \text{ dissipativ} :\Leftrightarrow [x' = f(t, x), \ x(0) = x_0 \Rightarrow ||x(t) - y(t)|| \xrightarrow{t \to \infty} 0]$

- $(x-y)^T (f(t,x) f(t,y)) \le 0 \quad \forall t \ge 0 \Rightarrow \text{Differentialgleichung } y' = f(t,y), y(0) = y_0 \in \mathbb{R}^n \text{ dissipativ}$
- MSV A-stabil $\Leftrightarrow ||y_k x_k|| \stackrel{k \to \infty}{\longrightarrow} 0$

5.4 A-Stabilität von Runge-Kutta-Verfahren

 $y_n = (r(h\lambda))^n y_0$, $r(h\lambda) := 1 + h\lambda b^T (I - h\lambda A)^{-1} 1$, (wobei 1 der Einsvektor ist)

- $|r(h\lambda)| < 1 \Rightarrow \text{RK A-stabil}$
- $\mathcal{D}:=\{z\in\mathbb{C}:\ |r(z)|<1\}=\mathbb{C}_-, r(z)$ rationale Funktion \Rightarrow A-Stabilität
- Keine explizite Methode ist A-stabil.
- $r \not\equiv \text{const.}$ und rational: $|r(z)| < 1 \quad \forall z \in \mathbb{C}_- \Leftrightarrow [z \text{ Pol von } r(z) \Rightarrow \Re(z) > 0], |r(it)| \le 1 \ \forall t \in \mathbb{R}$
- Padi-Approximation: $r(z) = e^z + O(h^{p+1}), \ p$ Ordnung der RK-Methode

6 Schrittweitensteuerung

kleine Schrittweiten $h > 0 \Rightarrow$ gute Genauigkeit, viele Berechnungsschritte großen Schrittweiten $h \gg 0 \Rightarrow$ wenige Berechnungsschritte, schlechte Genauigkeit \Rightarrow Schrittweitensteuerung, variable Schrittweiten h_n

7 Methode nach Milne

Sei das MSV $\sum_{m=1}^{s} a_m y_{k+m} = h \sum_{m=0}^{s} b_m f(t_m, y_{k+m})$ von Ordnung p und $a_s = 1$. Wir wähles ein weitere MSV von Ordnung p zur Überwachung des ersten MSV: $\sum_{m=q}^{s} \widetilde{a_m} x_{k+m} = h \sum_{m=0}^{s} \widetilde{b_m} f(t_m, x_{k+m})$ mit $q \leq s-1$, $\widetilde{a_s} = 1$

$$y(t_{k+s}) - y_{k+s} \approx \frac{C}{C - \widetilde{C}}(x_{k+s} - y_{k+s})$$

Mögliche Implementierung:

1. Festlegung von h > 0

2. Berechnung von y_{k+s}

3.
$$H := \frac{C}{C - \tilde{C}} |\cdot| |x_{k+s} - y_{k+s}| | \le hs$$
?

(a) ja
$$\Rightarrow t_{k+s} > T$$
?

i. ja
$$\Rightarrow$$
 Stop

ii. nein
$$\Rightarrow H \leq \frac{hs}{10}$$
?

A. ja
$$\Rightarrow h$$
 verdoppeln, GOTO 3.(a)ii.B

B. nein
$$\Rightarrow k \rightarrow k + 1$$
, GOTO 2.

(b) nein $\Rightarrow h$ halbieren, Startwerte für neues y_{k+s} durch Interpolation neu berechnen, GOTO 2.

8 Zadunaiskys Methode

Seien $y_{k-p},...,y_k$ die Näherungen der DGL $y'=f(t,y),\ y(t_0)=y_0$ an den Stellen $t_{k-p},...,t_k$ durch ein MSV von Ordnung p. Sei p ein Polynom mit

$$\underline{p}(t) = \sum_{j=k-p}^{k} y_j L_j(t), \quad L_j(t) := \prod_{l=k-p, l \neq j} \frac{t - t_k}{t_j - t_l}$$

Betrachte nun die DGL:

$$z' = f(t,z) + \underline{p}'(t) - f(t,\underline{p}(t)), \ z(t_k) = y_k, \ t \ge t_k$$

Durch die Lösung dieser DGL erhält man einen Fehler

$$||p(t_{k+1}) - z_{k+1}|| = H \approx ||y_{k+1} - y(t_{k+1})||$$

9 Prädiktor-Korrektor-Verfahren

Startwert mit explizitem Verfahren (Prädiktor) berechnen:

$$y_{n+k}^{(0)} + \sum_{j=0}^{k-1} a_j y_{n+j} = h \sum_{j=0}^{k-1} b_j f(t_{n+j}, y_{n+j})$$

Iteration mit implizitem Verfahren (Korrektor) durchführen:

$$y_{n+k}^{(l+1)} = -\sum_{j=0}^{k-1} \alpha_j y_{n+j} + h\beta_k f(t_{n+k}, y_{n+k}^{(l)}) + h\sum_{j=0}^{k-1} \beta_j f(t_{n+j}, y_{n+j})$$

Für ausreichend kleine Schrittweiten h konvergiert die Methode.

Teil II

9

Lösung dünn besetzter, großer linearer Gleichungssysteme

10

10 Cholesky-Verfahren

10.1 Matrizen und Bäume

Man kann die Besetzungsstruktur von symmetrischen Matrizen $A=(a_{ij})\in\mathbb{R}^{n\times n}$ durch Graphen ausdrücken:

- Ein Graph ist eine Menge von Ecken $E = \{1, ..., n\}$ und Kanten K
- $(i,j) \in K \Leftrightarrow a_{ij} \neq 0, i < j$
- Ein Baum ist ein Graph, bei dem je zwei Ecken aus E durch eine Kante $k \in K$ verbunden sind.
- Man kann einen Baum (E, K) mit einer Wurzel ausstatten.
- \bullet Ein Baum mit Wurzel (E, K, W) kann nach Eltern und Kindern geordnet werden.
- Ein Baum heißt monoton, falls jede Ecke vor allen ihren Vorfahren numeriert ist $((i,k) \in K \Rightarrow (i,q) \notin K \ \forall q < k)$
- Parter: $A \in \mathbb{R}^{n \times n}$ positiv definit, symmetrisch mit monotonem Baum als Graphen \Rightarrow Cholesky-Zerlegung $A = LL^T$ mit $l_{kj} = \frac{a_{kj}}{l_{jj}}, j < k \leq n, 1 \leq j < n, l_{jj} = \sqrt{a_{jj}}$

11 Iterative Verfahren

Wir wollen das Gleichungssytstem

$$Ax = b, \quad A \in \mathbb{R}^{n \times n}, \ b \in \mathbb{R}^n$$

lösen. Dazu kann man A in zwei Matrizen zerlegen: A = P - N, so dass P eine "einfache" Matrix ist und dann eine Iteration durchführen:

$$Px_{k+1} = Nx_k + b \iff x_{k+1} = P^{-1}Nx_k + P^{-1}b \iff x_{k+1} = Hx_k + v$$

- $x_{k+1} = Hx_k + v$ konvergiert für jeden Startwert $x_1 \Leftrightarrow \varrho(H) < 1$
- Householder-John: $A \in \mathbb{R}^{n \times n}$ symmetrisch: A und $(P + P^T - A)$ positiv definit $\Rightarrow \varrho(H) < 1$

Sei A = D - L - R, D Diagonalmatrix, L linke untere, R rechte obere Dreiecksmatrix.

11.1 Jacobi und Gauss-Seidel

 $\label{eq:Jacobi-Verfahren:} \textbf{Jacobi-Verfahren:} \quad P=D, \quad N=L+R, \quad \widetilde{L}:=D^{-1}\cdot(L+R)$ $\textbf{Gauss-Seidel-Verfahren:} \quad P=D-L, \quad N=R, \quad B:=(D-L)^{-1}\cdot R$

- Starkes Zeilensummenkriterium: A strikt diagonaldominant $\Rightarrow \varrho(\widetilde{L}) < 1, \varrho(B) < 1$
- Stein-Rosenberg: $|a_{ij}| \neq 0 \ \forall j = 1,...,n, \ b_{ij} \geq 0 \ \forall i,j=1,...,n$

$$\Rightarrow \qquad \begin{array}{cccc} \varrho(\widetilde{L}) = \varrho(B) = 0 & \vee & \varrho(\widetilde{L}) < \varrho(B) < 1 \\ \vee & \varrho(\widetilde{L}) = \varrho(B) = 1 & \vee & \varrho(\widetilde{L}) > \varrho(B) > 1 \end{array}$$

• A tridiagonal, $a_{ij} \neq 0 \ \forall j = 1,..,n$

$$\begin{aligned} & - \lambda \in \sigma(B) \Rightarrow \ \lambda^2 \in \sigma(\widetilde{L}) \\ & - \mu \in \sigma(\widetilde{L}) \backslash \{0\} \Rightarrow \ \sqrt{\mu} \ \lor \ -\sqrt{\mu} \in \sigma(B) \\ & - \varrho(B) < 1 \Rightarrow \ \varrho(\widetilde{L}) < 1 \end{aligned}$$

11.2 SOR-Verfahren

$$P = D - \omega L$$
, $D = (1 - \omega)D + \omega R$, $\omega \in [1, 2)$

Ordnungsvektoren

- $K := \{(k, l) : 1 \le k, l \le n, a_{k,l} \ne 0\}$
- $j \in \mathbb{Z}^n$ Ordnungsvektor zu $A \in \mathbb{R}^{n \times n} : \Leftrightarrow |j_k j_l| = 1 \ \forall (k, l) \in K$
- $j \in \mathbb{Z}^n$ kompatibler Ordnungsvektor zu $A \in \mathbb{R}^{n \times n}$

$$:\Leftrightarrow |j_k - j_l| = \begin{cases} 1 & k \ge l+1 \\ -1 & k \le l-1 \end{cases} \quad \forall (k,l) \in K$$

Konvergenz des SOR-Verfahrens

- \bullet j Ordnungsvektor zu $A\Rightarrow\ \exists P$ Permutationsmatrix: PAP^{-1} besitzt kompatiblen Ordnungsvektor
- A besitzt kompatiblen Ordnungsvektor $\Rightarrow g(s,t) = \det(tL + t^{-1}R sD)$ unabhängig von $t \in \mathbb{R} \setminus \{0\} \ \forall s \in \mathbb{R}$
- ullet A besitzt kompatiblen Ordnungsvektor

$$-\mu \in \sigma(B) \text{ mit Multiplizit} it k \Rightarrow -\mu \in \sigma(B) \text{ mit Multiplizit} it k$$

$$-\mu \in \sigma(B), \omega \in (0,2), \lambda : \lambda + \omega - 1 = \omega \mu \sqrt{\lambda} \Rightarrow \lambda \in \sigma(\widetilde{L_{\omega}})$$

$$-\omega \in (0,2), \lambda \in \sigma(\widetilde{L_{\omega}}) \Rightarrow \exists \mu \in \sigma(B) : \lambda + \omega - 1 = \omega \mu \sqrt{\lambda}$$

- Abesitzt kompatiblen Ordnungsvektor $\Rightarrow \ \varrho(\widetilde{L}) = \varrho(B)^2$
- $\varrho(\widetilde{L_{\omega}}) < 1 \Rightarrow \omega \in (0,2)$
- A besitzt kompatiblen Ordnungsvektor, $\sigma(B)\subset\mathbb{R}\Rightarrow \mbox{ [SOR konvergiert }\forall\omega\in(0,2)\Leftrightarrow\varrho(B)<1]$

• A besitzt kompatiblen Ordnungsvektor, $\rho(B) \subset \mathbb{R}, \overline{\mu} := \rho(B) < 1 \Rightarrow$

$$-\varrho(\widetilde{L_{\omega}}) > \varrho(\widetilde{L_{\omega_{\text{opt}}}}) \,\forall \omega \in (0,2) \setminus \{\omega_{\text{opt}}\}\$$

$$-\omega_{\text{opt}} = 1 + (\frac{\overline{\mu}}{1 + \sqrt{1 - \overline{\mu}^2}})^2 = \frac{2}{1 + \sqrt{1 - \overline{\mu}^2}} = \frac{2(1 - \sqrt{1 - \overline{\mu}^2})}{\overline{\mu}^2} \in (1,2)$$

$$-\varrho(\widetilde{L_{\omega_{\text{opt}}}}) = (\frac{\overline{\mu}}{1 + \sqrt{1 - \overline{\mu}^2}})^2 = \omega_{\text{opt}} - 1$$

Eigenschaft A

- A besitzt Eigenschaft $\mathbf{A}:\Leftrightarrow \exists S_1,S_2:\ S_1\cup S_2=\{1,..,n\}, S_1\cap S_2=\emptyset:\ [(k,l)\in K\Rightarrow (k,l)\in S_1\times S_2\lor (k,l)\in S_2\times S_1]$
- A besitzt Eigenschaft A \Leftrightarrow A besitzt Ordnungsvektor

11.3 CG-Verfahren

Suche $x \in \mathbb{R}^n$: $A \cdot x = b$ $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, A symm., positiv definit

Definiere
$$f: \mathbb{R}^n \to \mathbb{R}, x \mapsto \frac{1}{2} \cdot x^T \cdot A \cdot x - b^T \cdot x$$

Dann gilt: $f(x^*) = \min_{x \in \mathbb{R}^n} f(x) \Rightarrow A \cdot x^* = b$, löse also statt des Gleichungssystems ein Minimierungsproblem

Algorithmus:

- $r^k := A \cdot x^k b$ Residuum
- $\lambda_k := \frac{(r^k)^T \cdot d_k}{(d^k)^T \cdot A \cdot d^k}$
- 1. Startwert $x_0 \in \mathbb{R}^n$, k=0
- $2 \quad x^{k+1} = x^k + \lambda_k \cdot d^k$
- 3. r^k klein genug \Rightarrow fertig r^k nicht klein genug $\Rightarrow k \to k + 1$, GOTO 2.

Wahl der d^k :

Konjugiertheit der Suchrichtungen: $(d^i)^T \cdot A \cdot d^j = 0 \ \forall i \neq j$

- $d^0 := -r^0$ $d^0 \neq 0$ (sonst $A \cdot x^0 = b$ und Lösung gefunden)
- $d^k := -r^k + \frac{(r^k)^T \cdot A \cdot d^{k-1}}{(d^{k-1})^T \cdot A \cdot d^{k-1}} d^{k-1}$

Es gilt

 λ_{\min} kleinster, λ_{\max} größter Eigenwert (> 0) der Matrix A, so dass $\operatorname{cond}_2(A) = \frac{\lambda_{\max}}{\lambda_{\min}}$, $e^k := x^* - x^k$ Fehler der Näherung an $A \cdot x^* = b$, x^k mit CG-Verfahren berechnet $\Rightarrow (e^k)^T \cdot A \cdot e^k \leq 4 \cdot (e^0)^T \cdot (\frac{\sqrt{\lambda_{\max} - \sqrt{\lambda_{\min}}}}{\sqrt{\lambda_{\min} + \sqrt{\lambda_{\min}}}})^{2k}$

Vorkonditionierung:

Angenommen A (symmetrisch und positiv definit) ist schlecht konditioniert. Ziel: Suche B, so dass $\operatorname{cond}(B) \ll \operatorname{cond}(A)$

$$B := H^{-1}AH^{-1}$$
, $Bx = H^{-1}b =: c$

Sei H regulär, dann ist B symmetrisch und positiv definit. Also kann man den CG-Algorithmus auf Bx=c anwenden

Damit die Eigenwerte von B nah beieinander liegen, sollte $HH^T \approx A$ sein, etwa durch unvollständige Cholesky-Zerlegung: Cholesky-Faktorisierung, aber $h_{ij} = 0$, falls $a_{ij} = 0$.

Algorithmus zum vorkonditionierten CG-Verfahren:

Löse statt Ax = b nun By = c mit Startwert x_0

- 1. $d_0 = r_0 = Ax_0 b$
- 2. $\lambda_k = -\frac{r_k^T d_k}{d_k^T H^{-1} A H^{-1}^T d_k}$
- $3. \ x_{k+1} = x_k + \lambda_k d_k$
- 4. $r_{k+1} = r_k (H^{-1}AH^{-1})(\lambda_k d_k)$
- 5. $d_{k+1} = -r_{k+1} + \frac{r_{k+1}^T H^{-1} A H^{-1}^T d_k}{d_k^T H^{-1} A H^{-1}^T d_k}$
- 6. r_{k+1} klein genug?
 - (a) $ja \rightarrow STOP$
 - (b) nein \rightarrow GOTO 2.

Fazit:

 CG ist das modernste und beste Verfahren für symmetrische und positiv definite A. Bei der Vorkonditionierung kann man sogar nichtpositive Eigenwerte entfernen und so eine positiv definite Matrix schaffen.

Teil III

Mehrdimensionale Splines

12 Wiederholung eindimensionale Splines

- $X = \{x_i\}_{i=1}^m$ Knotenmenge, $x_1 < ... < x_m$
- $S_{X,k} = \{s : [x_0, x_m] \to \mathbb{R} : s_{|[x_i, x_{i+1}]} \in \mathbb{P}^k, s \in \mathcal{C}^{k-1}(x_0, x_m)\}$
- Basis von $S_{X,k}$: B-Splines $\{B_i\}_{i=-k}^{m-1}$, supp $B_i = [x_i, x_{i+k+1}]$

13 Tensorprodukt

Im Zweidimensionalen:

$$S_{X\times Y,k} = \{s: [x_0, x_m] \times [y_0, y_n] \to \mathbb{R}: \ s_{|[x_i, x_{i+1}] \times [y_i, y_{i+1}]} \in \mathbb{P}_1^k \times \mathbb{P}_1^k, \ s \in \mathcal{C}^{k-1}([x_0, x_m] \times [y_0, y_n])\}$$

14

Definition:

13

 $X = \{x_0 < ... < x_m\}, Y = \{y_0 < ... < y_n\}$ Knotenmengen, $B_i \in S_{X,k}, \tilde{B}_j \in S_{Y,k}$ B-Splines: **Tensorprodukt B-Splines** $B_{ij}(x,y) = B_i(x) \cdot \tilde{B}_j(y)$

Die Tensorprodukt B-Splines bilden eine Basis von $S_{X\times Y,k}$

Analog für höhere Dimensionen

Problem:

Totalgrad der Polynome ist von der Raumdimension abhängig $(k \cdot \dim)$

14 Splines von totalem Grad k

Definitionen

- k Komponentengrad von $p=p(x_1,..,x_n)=\sum_{\alpha}a_{\alpha}x_1^{\alpha_1}\cdot..\cdot x_n^{\alpha_n}\in\mathbb{P}_n^k$: $\Leftrightarrow k=\max_{\alpha,i=1,...n}\alpha_i$
- t Totalgrad von $p = p(x_1, ..., x_n) = \sum_{\alpha} a_{\alpha} x_1^{\alpha_1} \cdot ... \cdot x_n^{\alpha_n} \in \mathbb{P}_n^k : \Leftrightarrow t = \max_{\alpha} \{\sum_{i=1}^n \alpha_i\}$

Sätze

- $V \subset \mathbb{R}^{k+1}$ Polyeder mit k+2 Ecken, $0 \neq d \in \mathbb{R}^{k+1}$, $U(\vartheta) := \{x \in \mathbb{R}^{k+1} : x^t d = \vartheta\}$: $U(\vartheta)$ enthält nie mehr als eine Ecke von $V \Rightarrow B(\vartheta) := \operatorname{vol}_k \big(U(\vartheta) \cap V \big)$ B-Spline von Grad k
- $V \subset \mathbb{R}^{k+n}$ Simplex (komplexe Hülle von n+k+1 Punkten), $x \in \mathbb{R}^n$: $M_x := \{y \in V : x = (y_1,...,y_n)^T\}$, $B(x) = \mathrm{vol}_k M_x$: M_x enthält nie mehr als eine Ecke von $V \Rightarrow B \in \mathbb{R}^n[x]$ Spline vom Totalgrad k

15 Box-Splines

Definitionen

- $k \ge 0$, $X = \{x_1, ..., x_{n+k}\} \subset \mathbb{Z}^n$ Richtungsmenge, span $X = \mathbb{R}^n$:
 - $-X = \{x_1, ..., x_{n+k}\}$ Menge von Richtungsvektoren
 - $-X = (x_1 \dots x_{n+k}) \in \mathbb{R}^{n+k \times n}$ Matrix
 - $\ X : \mathbb{R}^{n+k} \to \mathbb{R}^n, t \mapsto Xt$ Abbildung
- Box-Spline B_X definiert durch $\int_{\mathbb{R}^n} B_X(x) f(x) dx = \int_{[0,1]^{n+k}} f(Xt) dt$
- \hat{f} Fouriertransformierte von $f \in L^1 :\Leftrightarrow \hat{f}(x) = \int_{\mathbb{R}^n} e^{-ixt} f(x) dt$
- $L^d_{\infty}(\mathbb{R}^n) := \{f : \mathbb{R}^n \to \mathbb{R} : f \text{ d-mal diff.bar}, f^{(d)} \text{ beschränkt}\}$ (insb. $f^{(d)}$ nicht unbedingt stetig)

Sätze

- $\operatorname{span}(X) = \operatorname{span}(X \setminus \{x_{n+k}\}) = \mathbb{R}^n \Rightarrow B_X(x) = \int_0^1 B_{X \setminus \{x_{n+k}\}}(x tx_{n+k}) dt$
- $\operatorname{supp}(B_X) = X[0,1]^{n+k} = \{Xt : t \in [0,1]^{n+k}\}$
- $\widehat{B}_X(x) = \prod_{j=1}^{n+k} \frac{1-e^{-i(x\cdot x_j)}}{x(x\cdot x_j)}$
- $B_X(x) > 0 \quad \forall x \in \text{supp}(B_X)$
- $k = 0 \Rightarrow B_X = \frac{1}{|\det(X)|} \cdot \chi_{X[0,1]^n}$
- $y \in \mathbb{R}^n \Rightarrow \exists \lambda_i : \sum_{i=1}^{n+k} \lambda_i x_i$; Ist D_y die Richtungsableitung $y^T \nabla$, so gilt:

$$- D_y B_X(x) = \sum_{i=1}^{n+k} \lambda_i \Big(B_{X \setminus \{x_i\}}(x) - B_{X \setminus \{x_i\}}(x - x_i) \Big)$$

$$- B_X(y) = \frac{1}{k} \sum_{i=1}^{n+k} \lambda_i B_{X \setminus \{x_i\}}(y) + (1 - \lambda_i) B_{X \setminus \{x_i\}}(y - x_i)$$

- $d := \max\{r : \operatorname{span}(X \setminus Z) = \mathbb{R}^n \ \forall Z \subset X : \ |Z| = r\} \Rightarrow B_X \in L_{\infty}^{(d)}(\mathbb{R}^n) \cap \mathcal{C}^{d-1}(\mathbb{R}^n)$
- $Z \subset X$ Basis von $\mathbb{R}^n \Rightarrow \sum_{j \in \mathbb{Z}^n} B_X(x Zj) = \frac{1}{|\det Z|} \quad \forall x \in \mathbb{R}^n$
- $\sum_{i \in \mathbb{Z}^n} B_X(x-j) = 1$

16 Polynome im Box-Spline-Raum $S_{X,k}$

Definitionen

- \mathbb{P}_n^k Menge aller Polynome in n Variablen mit Totalgrad $\leq k$
- $Qp(x) := \sum_{j \in \mathbb{Z}^n} p(j) B_X(x-j), x \in \mathbb{R}^n$ Quasiinterpolation (Schoenberg-Operator)
- $N: \mathbb{P}_n \to \mathbb{P}_n$ gradvermindernd : $\Leftrightarrow \operatorname{Grad}(N(p)) < \operatorname{Grad}(p) \ \forall p \neq 0, \ N(0) = 0$
- $(v_j)_{j\in\mathbb{Z}^n}\mapsto \left(\sum_{j\in\mathbb{Z}^n}v_jw_{m-j}\right)_{m\in\mathbb{Z}^n}$ Faltung $v\mapsto v*w$

Sätze

- $X^* := \{Z \subset X : \operatorname{span}(X \backslash Z) \neq \mathbb{R}^n\}, \ D_Z = \prod_{z \in Z} D_z \text{ (Richtungsableitungen)}$ $\Rightarrow \mathbb{P}_n \cap S_{X,k} = \bigcap_{Z \in X^*} \operatorname{Kern}(D_Z)$
- $d := \max\{r : \operatorname{span}(X \setminus Z) = \mathbb{R}^n \ \forall Z \subset X, |Z| = r\} \Rightarrow \left[\mathbb{P}_n^k \subset S_X \Leftrightarrow k \leq d\right]$
- $f: \mathbb{R}^n \to \mathbb{R}$ gleichmässig stetig, $Q_n f(x) = \sum_{j \in \mathbb{Z}^n} f(jh) B_X(\frac{x}{h} j), x \in \mathbb{R}^n$ $\Rightarrow Q_n f \xrightarrow{h \to 0} f$ gleichmässig
- $(\mathbb{P}_n^k)^* = \{\mu : \mathbb{P}^k \to \mathbb{R} : \mu \text{ lineares Funktional} \}, k \leq \max\{r : \operatorname{span}(X \backslash Z) = \mathbb{R}^n \ \forall Z \subset X, |Z| = r\} \Rightarrow \exists \lambda \in (\mathbb{P}_n^k)^* : Q(\lambda p) = p \quad \forall p \in \mathbb{P}_n^k$
- $d := \max\{r : \operatorname{span}(X \setminus Z) = \mathbb{R}^n \ \forall Z \subset X, |Z| = r\}, \ f \in \mathcal{C}^{d+1}(\mathbb{R}^n)$ mit gl.m. beschränkten Ableitungen der Ordnung $d+1 \Rightarrow \exists$ Erweiterung $\tilde{\lambda}$ von $\lambda \in (\mathbb{P}_n^d)^* : \|f(x) Q_h(\tilde{\lambda}f)(x)\|_{\infty} = O(h^{d+1})$

17 Interpolation durch Box-Splines: Lagrange-Darstellung

Wir wollen die Funktion $f \in \mathcal{C}(\mathbb{R}^n)$ durch eine Funktion $s(x) = \sum_{j \in \mathbb{Z}^n} a_j B_X$ in allen Punkten aus \mathbb{Z}^n interpolieren. Es sind also Koeffizienten $(a_j)_{j \in \mathbb{Z}^n}$ gesucht, so dass gilt:

$$s(x) = \sum_{j \in \mathbb{Z}^n} f(j) L_j(x), \quad L_j(x) = \sum_{k \in \mathbb{Z}^n} c_{k,j} B_X(x - k) = \begin{cases} 1 & x = j \\ 0 & x \in \mathbb{Z}^n \setminus \{j\} \end{cases}$$

Da wir äquidistante Knoten betrachten, sind die L_i bis auf Verschiebung gleich

$$L(x) = \sum_{k \in \mathbb{Z}^n} c_k B_X(x - k) = \begin{cases} 1 & x = 0 \\ 0 & x \in \mathbb{Z}^n \setminus \{0\} \end{cases} \Rightarrow L_j(x) = L(x - j)$$

Es sei das Symbol der Lagrange-Funktion wie folgt definiert:

$$\sigma(\vartheta) := \sum_{j \in \mathbb{Z}^n} B_X(j) e^{-i\vartheta j}$$

Die c_k sind die Fourierkoeffizienten von $\frac{1}{\sigma(\theta)}$:

$$c_k = \frac{1}{(2\pi)^n} \int_{[-\pi,\pi]^n} e^{i\vartheta k} \frac{1}{\sigma(\vartheta)} d\vartheta$$

Dies ist wohldefiniert, da $\sigma(\vartheta)$ keine Nullstellen besitzt.

Man kann dies etwa mit der Poisson'schen Summationsformel einsehen:

$$f: \mathbb{R}^n \to \mathbb{R}$$
 absolut integrierbar, $\sum_{j \in \mathbb{Z}^n} |f(j)|$, $\sum_{k \in \mathbb{Z}^n} |\hat{f}(\vartheta + 2\pi k)|$ beide konvergent $\forall \vartheta \Rightarrow \sum_{j \in \mathbb{Z}^n} f(j)e^{-i\vartheta j} = \sum_{k \in \mathbb{Z}^n} \hat{f}(\vartheta + 2\pi k)$

Da $\sigma(\vartheta) = \sum_{j \in \mathbb{Z}^n} B_X(j) e^{-i\vartheta j} = \sum_{k \in \mathbb{Z}^n} \widehat{B_X}(\vartheta + 2\pi b)$, muss man nur noch zeigen, dass gilt:

- $\widehat{B_X} > 0$
- $\not\exists \vartheta_0: \widehat{B_X}(\vartheta_0 + 2\pi k) = 0$