
Automatic Abstraction in
Symbolic Trajectory Evaluation

Sara Adams, Magnus Björk, Tom Melham
Oxford University Computing Laboratory

Oxford, OX1 3QD, England
Email: {sara,magnus,melham}@comlab.ox.ac.uk

Carl-Johan Seger
Strategic CAD Labs, Intel Corporation

Hillsboro, OR 97124, USA
Email: carl.seger@intel.com

Abstract—Symbolic trajectory evaluation (STE) is a model
checking technology based on symbolic simulation over a lattice
of abstract state sets. The STE algorithm operates over families
of these abstractions encoded by Boolean formulas, enabling ver-
ification with many different abstraction cases in a single model-
checking run. This provides a flexible way to achieve partitioned
data abstraction. It is usually called ‘symbolic indexing’ and
is widely used in memory verification, but has seen relatively
limited adoption elsewhere, primarily because users typically
have to create the right indexed family of abstractions manually.
This work provides the first known algorithm that automatically
computes these partitioned abstractions given a reference-model
specification. Our experimental results show that this approach
not only simplifies memory verification, but also enables handling
completely different designs fully automatically.

I. I NTRODUCTION

Symbolic Trajectory Evaluation (STE) is a model checking
technology based on symbolic simulation over a lattice of
abstract state sets [1]. STE provides a combination of abstrac-
tion and algorithmic efficiency for verification of memories
and datapath-dominated designs, and has tackled numerous
difficult industrial verification problems [2]–[4].

In the abstraction lattice at the heart of STE, each circuit
node is assigned a value in the set{0, 1,X}, with ‘X’
representing an unknown or ‘don’t care’ value. An assignment
of such values to every circuit node is an abstraction of a set
of Boolean circuit states. It is abstract in the sense that it
ambiguously stands for any one of a family of Boolean state
sets, one for each replacement of everyX by 0 or 1. The
collection of all such abstractions forms a lattice, ordered by
the amount of information about node values.

The STE model-checking algorithm uses three-valued cir-
cuit simulation [5] to compute a reachable abstract state-set in
this representation, comparing this to a specification written
in a weak linear-time temporal logic. The algorithm is space-
efficient because it operates over abstractions of sets of states;
any parts of the circuit function not relevant to the specification
get ‘abstracted away’ toX. Any correctness result verified in
this abstract model transfers over to the real, Boolean model of
circuit states. Formally, there is a Galois connection between
the three-valued model and the Boolean model of states [6].

On top of the abstraction lattice, STE provides a layer of
symbolic representation whereby whole families of abstrac-
tions may be checked simultaneously in one run of the model-

checker. The abstractions are indexed symbolically by Boolean
variables, and formulas of Boolean logic are computed to
represent the resulting families of reachable abstract state
sets. This mechanism, sometimes called ‘symbolic indexing’,
provides a flexible way to achieve partitioned data abstraction.
A typical example is a memory verification, in which an
n-element memory is verified with an indexed family ofn

abstractions, one for each address at which some target data
might be located.

The abstractions in an indexed family can overlap in flex-
ible, though not quite arbitrary, ways. This representation
can also record interdependencies among node values, and
so greatly increases the expressive power of specifications
for STE. In implementations, the formulas in the symbolic
layer may be manipulated using BDDs or other (usually semi-
canonical) representations, and decided using SAT or BDDs.

This abstraction machinery is controlled by the way in
which a user writes properties for model checking. By careful
coding of the property, the user can guide the symbolic
simulation done during model-checking through the right
layers of the abstract state lattice to verify the property with
contained complexity. A good illustration of success is the
content-addressable memory verification done by Pandey and
colleagues [2], in which a careful encoding of properties gives
a logarithmic reduction in complexity.

Controlling abstraction manually in this way can be dif-
ficult, especially if there are assumptions about the operat-
ing environment of the verification. The property encoding
required for abstraction is often non-obvious and tricky to
devise. This paper describes an automatic approach to STE
abstraction. We present an algorithm that computes an indexed
family of abstractions from the specification to be verified.
The abstraction scheme is then encoded in the guards of
the verification property using the indexing transformation
algorithm of Melham and Jones [7]. The result is an automatic
abstraction method for STE, which requires little or no user
guidance. We illustrate the effectiveness of our method with
verifications of a memory, a CAM, and a simple scheduler.

II. A BSTRACTION IN STE

Verification properties in STE are calledtrajectory asser-
tionsand have the formA ⇒ C, whereA andC are formulas
of a simple linear-time temporal logic. The intuition is that the

antecedentformula A describes some initial conditions of the
circuit inputs and states, and theconsequentC specifies the
values expected on circuit nodes as a response. The atomic
propositions inA and C take the form ‘P _ n is 0’ or
‘P _ n is 1’, where n is the name of a circuit node and
the guard P is a formula of propositional logic. The guard
determines when the proposition is asserted: ifP is true,
then the noden must have the value 0 (or 1 respectively);
if P is false, then there is no such assertion andn can have
any value—including, for abstraction efficiency, the don’t care
value X. Antecedents and consequents are essentially just
conjunctions of these atomic propositions, possibly modified
by the next-time temporal operatorN.

The guards in a trajectory assertion are all formulas of
propositional logic over some set of variables; different guards
can share variables, but not all the variables need appear in
every guard. For each assignment of truth-values to these
variables, the trajectory assertion collapses into a property
verifiable by three-valued simulation, withXs on all circuit
nodes not forced to 0 or 1 by the antecedent or the circuit
itself. Sets of reachable states are approximated by abstractions
that assign a value in{0, 1,X} to each circuit node. Given a
trajectory assertion, STE simultaneously computes the family
of all such three-valued simulations, one for each satisfying
assignment to the variables in the guards.

Users control this partitioned abstraction mechanism by
appropriate selection of guards. The idea can be illustrated
by the following trivial example. Consider a unit-delay AND-
gate with three input nodesa, b, and c and output nodeo.
A verification that does not exploit the abstraction latticeis
achieved by running STE on this trajectory assertion:

t1 _ a is 0 and t1 _ a is 1 and

t2 _ b is 0 and t2 _ b is 1 and

t3 _ c is 0 and t3 _ c is 1
⇒

N(t1 ∨ t2 ∨ t3 _ o is 0 and t1 ∧ t2 ∧ t3 _ o is 1)

(1)

This is just symbolic Boolean simulation. The antecedent
attaches a distinct, unconstrained, propositional variable to
each input node. And the consequent asserts that the expected
Boolean function of these variables appears on the output.
Note that all Boolean variables in STE appear in the guards;
the constantsa, b, andc are node names, not variables.

STE’s abstraction lattice lets us reduce the number of
variables needed to verify this gate. The key observation is
that if any one input is 0, then the output will be 0 regardless
of the other inputs. We can exploit this withXs to introduce
abstraction in the model-checking run. For the AND gate, there
are four cases to check; we can enumerate or ‘index’ these with
two variables, sayx1 andx2. We write the following:

x1 ∧ x2 _ a is 0 and

x1 ∧ x2 _ b is 0 and

x1 ∧ x2 _ c is 0 and

x1 ∧ x2 _ a is 1 and b is 1 and c is 1
⇒

N(x1 ∨ x2 _ o is 0 and x1 ∧ x2 _ o is 1)

(2)

Model-checking this with STE will simultaneously check four
cases, each with different but sometimes overlapping abstrac-
tions of the reachable states arising. Any property verifiedin
STE with a node set toX also holds when the node is either0
or 1, so this assertion covers all input cases and is complete.

The advantage of this kind of abstraction is that it makes the
representation of sets of states more compact, so that BDD or
SAT computations in the model-checking are more tractable.
The reduction in the number of propositional variables can be
substantial in real applications.

A. Indexing Transformations

Melham and Jones [7] describe an algorithm by which
trajectory assertions can be transformed to introduce more
abstraction. SupposeA ⇒ C is an assertion. The algorithm
replaces the guards inA and C with new propositional
formulas over a set of fresh variables in such a way that if
the transformed assertion holds then so doesA ⇒ C.

The algorithm takes as input a relation that specifies the
abstraction scheme to be applied. For the three-input AND-
gate, one possible abstraction relation is

((x1 ∧ x2) → t1) ∧ ((x1 ∧ x2) → t2) ∧
((x1 ∧ x2) → t3) ∧ ((x1 ∧ x2) → (t1 ∧ t2 ∧ t3))

(3)

The variablesx1 and x2 index the abstraction cases, and
the variablest1, t2, and t3 appear in the directly-formulated
Boolean trajectory assertion (1). Using this relation, thealgo-
rithm will compute the encoded trajectory assertion (2).

The Melham-Jones algorithm works by taking certain
preimages of an assertion’s guards under the supplied abstrac-
tion relation. The relation takes the formR[X , T], whereT
is a set oftarget variablesthat occur in the guards ofA ⇒ C

(they need not be all the variables) andX is a set of fresh
indexing variables. For a given guardP , we define theweak
preimagePR andstrong preimagePR by:

PR[X] = ∃T . R[X , T] ∧ P [T]

PR[X] = PR[X] ∧ ¬∃T . R[X , T] ∧ ¬P [T]

where∃T denotes existential quantification over all the vari-
ables in the setT . Intuitively, PR[X] is true for all indicesX
that allow P to hold, andPR[X] is true for all indicesX that
force P to hold. Given an assertionA ⇒ C, the algorithm
applies the strong preimage to the guards inA and the weak
preimage to the guards inC. This weakens the verification
assumptionsA by introducing Xs, while maintaining the
strength of the verification requirementsC.

It is a technical side-condition required for soundness of
the abstraction that the supplied relation satisfies the coverage
condition∀T .∃X . R[X , T]. This ensures all the target variable
values are indexed. Coverage is a bit more tricky when there
are environmental constraints on the verification [7].

The indexing algorithm can be used on specifications that
specify timing delays, such as the AND-gate above, as well
as purely combinational ones. There is no explicit represen-
tation of time in the indexing relation itself—sequential STE
specifications normally use distinct variables in the guards of

input nodes for the different time points of interest, so these
are just different target variables in the indexing relation.

B. The Automatic Abstraction Method

The core of the method in this paper is an algorithm that
automatically computes abstractions for use with the indexing
transformation just described. The output of the algorithmis
an abstraction relation of the kind illustrated by (3), the AND-
gate relation of the previous section, but vastly more complex
and unintuitive for realistic examples. The practical benefit is
that a user does not have to invent the abstraction and manually
encode it into the trajectory assertion to be verified.

The algorithm takes as input aspecificationfor the circuit
to be verified, in the form of a Boolean expression that states
the required I/O function. This specification is typically a
component of the STE assertion to be verified, so in principle
our method need not require anything beyond the manually-
written properties that any verification needs. (But see the
discussion of ‘symbolic constants’ below.) We work from
specifications rather than circuits because they give a clean ref-
erence model of the algorithm the circuit uses, unencumbered
by implementation detail [8]. Although the I/O specification
provided as input to our algorithm is purely combinational,
the resulting abstraction relation is applicable to sequential
circuits, for the reasons explained in the previous section.

The algorithm is presented in Sections III and IV, where
we also prove that the relations generated meet the required
coverage condition by construction. In Section V we then
describe several optimizations to the preimage calculations
done to transform trajectory assertions. Some of these exploit
the special form that our abstractions relations have because
of how they are generated. We prove the correctness of the
most complex of these optimizations.

The experimental results in Section VI show that our method
handles both embedded memories—the classic target for man-
ual symbolic indexing—and the much less intuitive example
of a scheduler. The paper concludes with some discussion of
related work and our plans for future extensions.

III. COMPUTING ABSTRACTION RELATIONS

The approach we take in computing an abstraction relation
is to use the structure of a specification function. Specifically,
we assume that we have been given a Boolean expression con-
structed using only two-input AND operators, NOT operators,
and named variables. We call this datatype abexpr for short.
For the time being, we suppose the expression has a single
output and is tree-structured.

We introduce the algorithm by describing a simplified ver-
sion, so we can convey the basic idea without too much detail.
Consider the algorithm in Fig. 1. The functionsimple bp takes
a bexpr for the specification and two BDDs,h and l, that
represent the conditions under which the output should be
high or low, respectively. It computes a BDD representing
an abstraction relation by propagating conditions backwards
through the circuit. The index variables of this relation are

1. simple bp(e, h, l) =
2. if is VAR(e) then
3. t := bexpr2bdd(e)
4. return ((h → t) ∧ (l → t));
5. elseif is NOT(e) then
6. return bp(strip NOT(e), l, h);
7. else// AND
8. x := fresh index var();
9. (e1, e2) := destructAND(e)
10. r1 := simple bp(e1, h, l∧x);
11. r2 := simple bp(e2, h, l∧x);
12. return (r1 ∧ r2);

Fig. 1. Simple back-propagation algorithm.

generated in line 8 and occur inh and l. The target variables
originate from the bexpr and are introduced in line 3.

The algorithm is recursive over the structure ofe, the
specification bexpr. In the base case, when thee is a variable,
the abstraction relation simply says that the target variable is
true wheneverh holds and false wheneverl holds. An invariant
of the algorithm is thath and l never both hold. For NOT
operations, we simply reverseh and l and continue. Finally,
for a two-input AND operator, more work is needed. Both
inputs must be high wheneverh holds, so we simply passh to
the recursive calls in lines 10 and 11. But there are two ways
l can be forced: either the first input or the second input has
to be low. This choice is captured by creating a fresh index
variablex. It is used to select which of the inputs are going
to be the decisive low signal. Note that we never require both
inputs to be low in order to achieve a maximum abstraction.

a

b

c
d

o

y1

y2

y3 y4

y5

y6

Fig. 2. Example circuit to illustrate our algorithm.

To illustrate the algorithm, consider the circuit in Fig. 2.
First assume we want to compute the abstraction relation for
the case the output is high. In other words, we want to compute
a family of abstract inputs that all yield an output of high and
that cover all such inputs. The resulting abstraction relation is

(x1 → a) ∧ (x1 → b) ∧ c ∧ d.

Intuitively, the index variablex1 decides whethera or b has to
be high, and bothc andd must be high. Similarly, if we call
simple bp with h=F and l=T we get the abstraction relation

(x1 → a) ∧ (x1 → b) ∧ (x2x1 → c) ∧ (x2 x1 → d).

We can combine the above two cases by callingsimple bp
with h=x0 and l=x0, wherex0 is a fresh Boolean indexing

variable. In this combined case, we get

(x3x0 → a) ∧ (x1x0 → a) ∧ (x3 x0 → b) ∧ (x1x0 → b) ∧
(x0 → c) ∧ (x2x1 x0 → c) ∧ (x0 → d) ∧ (x2 x1 x0 → d).

There are several shortcomings of this simple algorithm that
make it inefficient. First, it builds a monolithic Boolean ex-
pression for the abstraction relation. But a partitioned relation
is often more feasible and easier to use. Second, the algorithm
is very generous in using fresh Boolean variables. Third, by
recognizing only two-input AND gates, the algorithm will es-
sentially use a unary encoding, rather than a binary encoding.
And by recognizing only conjunctions, the algorithm uses
more Boolean variables than needed—for example, simply
recognizing XNOR gates can reduce the number of variables
by a factor of two. Finally, the algorithm is sometimes too
aggressive in computing the abstraction relation. It is quite
common that the user can select some signals not to be part
of the abstraction. Thus, the algorithm needs to be controlled
when suchsymbolic constantsare present.

IV. I MPROVED ALGORITHM

In Fig. 3, we provide a much improved algorithm that
tackles all of the shortcomings of the simple algorithm.

1. bp(C, e, h, l, name) =
2. if freevars(e) ⊆ C OR is VAR(e) then
3. return {(bexpr2bdd(e), h, l)};
4. elseif is XNOR(e) then
5. (i1, i2) := sort inp args(C,e);
6. if freevars(i1) ⊆ C then
7. c := bexpr2bdd(i1);
8. return bp(C, i2, h c∨ l c, hc∨ l c, name);
9. else
10. {x1,x2} := get caseexprs(name,2);
11. {n1,n2} := make unique names(name,2);
12. return (bp(C, i1, hx1 ∨ l x1, hx2 ∨ l x2, n1)∪
13. bp(C, i2, hx1 ∨ l x2, hx2 ∨ l x1, n2));
14. elseif is NOT(e) then
15. return bp(C, strip NOT(e), l, h, name);
16. else// AND
17. (cis,oinps) := find big ands(e);
18. c:=

∧

ci∈cis bexpr2bdd(ci);
19. res :=if cis = ∅ then ∅ else{(c,h,F)};
20. cases := getcaseexprs(name,|oinps|);
21. if h ≡ F then
22. names := mksamenames(name, |oinps|);
23. else
24. names := mkunique names(name, |oinps|);
25. foreach b ∈ oinps, s ∈ cases, n ∈ names
26. res :=res∪ bp(C, b, h, l∧s∧c, n);
27. return res;

Fig. 3. Main back-propagation algorithm.

The algorithm is recursive and takes a set of symbolic
constantsC, a bexpre, the high and low conditionsh andl, and
a base namenameused to create unique variables. It returns a
list of triples, where each triple consists of a Boolean function
f over the symbolic constantsC and the generated indexing
variablesX , and two Boolean functions denoting the cases in
which f should be high or low, respectively. In Section V we
will show how this format leads to a very efficient algorithm
for computing the preimage operations needed for STE.

In more detail, on line 2-3, we deal with the two cases
that the expressione only depends on variables inC or e is
a target variable. For either case, we create a singleton triple
representing the partial relation.

On line 4, we test whether the last bexpr represents an
XNOR gate or not. If yes, on line 5 we sort the two inputs
to the XNOR gate by their support so that if one input only
depends on variables inC, it will be the first inputi1. If at least
one of the inputs depends only on variables inC, we do not
need to introduce any new indexing variables, but can simply
call bp recursively suitably modifying theh and l functions
given the value of the symbolic expression. If both inputs to
the XNOR depend on target variables, then on line 10-11 we
create two case expressions and two new base names. The
case expressions are simplyxi and xi for some variablexi

created from thenameargument. On lines 12 and 13 we then
call bp recursively on inputsi1 andi2, with suitable high and
low functions and distinct base names. Finally, the union of
the two sets of triples returned is formed.

On lines 14-15 we deal with the case whene is a NOT
expression. Here we simply callbp recursively switchingh
and l.

Finally on lines 16-27 we deal with the case when the final
operator ofe is an AND gate. On line 17, we traverse the
bexpr to find as large an AND gate as possible by calling the
routine find big ands. This routine not only finds all inputs
that are conjoined, it also separates the inputs into two groups:
the ones that only depend on variables inC and those that do
not. The conjunction of the first group is formed in line 18,
since they do not need indexing variables. Only a consistency
requirement, computed on line 19, is needed to make sure the
assignment of the indexing variables does not contradict the
value of this expression. Technically, we are only requiredto
add the implicationh → c, but rather than having a separate
set of consistency requirements, we include the triple(c, h,F)
in the relation.

On line 20 we compute a set of mutually exclusive Boolean
expressions over some fresh indexing variables that will be
used to encode which of the inputs should be set to low. On
line 21, we deal with a common special case that allows us
to call bp recursively without new base names, thus greatly
increase the sharing of indexing variables. Finally, on lines
25 and 26 we callbp recursively on every input expression
modifying the low condition according to the case expressions.

A. Coverage

Although the intuition behind the algorithm is fairly simple,
it is critical to ensure that the trajectory assertions after
abstraction verify all of the cases that were verified by the
original assertions. We guarantee this by proving coveragein
Theorem 1. Note that apart from indexing variablesX we
also need to consider the symbolic constantsC. Recall thatX
are used to index different cases of assertions forT , while
the symbolic constantsC basically introduce some additional,
temporary target variables. For coverage we hence show that
for every assignment of target variables and symbolic constants
we can find an indexing corresponding to it.

Theorem 1 (Coverage):Given a Boolean expression repre-
sented as a bexpr-treee, let rl = bp(C, e, x0, x0, name) be the
result of the algorithm in Fig. 3, wherename is chosen to
ensure that none of the generated variables are calledx0. If

R[X , C, T] =
∧

(ei,hi,li)∈rl

(hi → ei) ∧ (li → ei),

then∀T .∀C.∃X . R[X , C, T].
Proof: Let the target variablesT and the symbolic

constantsC be arbitrary, but fixed. Then we can simulate the
bexpr-tree. That is, we can determine all input and output
values of each constructor ofe. In particular, the simulation
result ofe and the values of all consequentsen in the relation
R[X , C, T] are known. By induction on the depthk of the
bexpr-treee we show that there exists a variable assignment
for X such that

∀n. ((en = F) → (hn = F)) ∧ ((en = T) → (ln = F)) (4)

ThenR[X , C, T] = T as required.
Base case: The only bexpr-tree e of depth 0

is a single variable t. In this case the relation is
R[X , C, T] = (x0 → t) ∧ (x0 → t). Property (4) is satisfied
by choosingx0 = t.

Inductive step:Suppose that for all bexpr-trees of depth≤ k

there is a variable assignment such that (4) holds.
We examine the last constructor of the bexpr-treee of depth

k + 1 and determine an assignment for the variablesY intro-
duced by the algorithm for that constructor. W.l.o.g. assume
the last constructor is an AND or a NOT that completes an
XNOR. In both cases assume at least one input depends on a
variable not inC—otherwise, no new indexing variables are
introduced and the induction hypothesis provides the required
variable assignment forX . We consider the two constructor
cases, AND and NOT, in I and II below.

I. Suppose the last constructor is AND. We analysee further
to extract all consecutive AND constructors, resulting in a
multiple input AND of maximal size, which is achieved by
find big ands in line 17 of Fig. 3. We will now determine
a variable assignment as desired depending on the simulation
result of e. For this we split the inputs of the AND gate into
two groups:cis, which only depend on variables inC, andij ,
which depend on some indexing variables.

Ia. First supposecis = ∅. Further suppose the simu-
lation result of e is true. We choosex0 = T, and hence

the output conditions arehe = T, le = F. Observe that all
inputs ij of the AND have to be true in the simulation and
∀j. hij

= T, lij
= F. Arbitrary values can be chosen forY,

they are only necessary for the case wheree is false. Note
that the variablesY are never used at any other point in
the algorithm due to the use of new, unique base names. An
assignment for the remainingX is determined as follows: By
induction hypothesis there exists an assignment for the bexpr-
tree of each inputij . The algorithm guarantees that each input-
tree uses a unique set of variables by specifying a unique
base name for the variables. Hence the assignments for each
input tree, and our assignment forY, can be merged to an
assignment as required.

Ib. Now supposecis = ∅, but the simulation result of
e is false. We choosex0 = F, and hencehe = F, le = T.
Observe that at least one inputij of the AND has to be
false in the simulation, w.l.o.g.i1 = F. The algorithm speci-
fies thathij

= le = F and lij
= casej [Y] ∧ le. We choose a

variable assignment forY such thatcase1 = T and hence
casej = F ∀j 6= 1.

By induction hypothesis there exists a variable assignment
for the input tree ofi1 as required. It does not includeY, so
the variable assignment can be merged with our assignment
to Y. Observe that for all other inputshij

= lij
= F, j 6= 1.

But the algorithm forms newhin, lin using conjunction with
hout, lout only, so we can deduce that allh, l on the input
trees ofij , j 6= 1 will be false throughout, in particular at the
terminating pointsen included in the relation. This means that
all variable assignments, and in particular the one chosen for
i1, satisfy (4) trivially.

Ic. Next supposecis 6= ∅ and c =
∧

ci∈cis ci is false. Then
at least one of the concrete inputs is false, and accordingly
the simulation output is false. Hence we choosex0 = F and
receivehe = F. The extra requirementhe → c is therefore
trivially satisfied. Also notice that in this case we need not
force any other inputs to be low, i.e.lij

= F for all j. So the
indexing variablesY can be chosen arbitrarily with the same
reasoning as in Ia.

Id. Finally supposecis 6= ∅ and c =
∧

ci∈cis ci is true.
Then the extra requirementhe → c is trivially satisfied. If
the simulation output is true, we choosex0 = T andY can
be chosen arbitrarily as seen in Ia. If the simulation outputis
false, we choosex0 = F. Given that we know that the concrete
inputs are all true this means the indexing has to force one
of the remaining inputs to be false. As seen in Ib, w.l.o.g.
we chooseY such thatcase1 = T and use the induction
hypothesis to complete the variable assignment.

II. Now suppose the last constructor is a NOT that completes
an XNOR, wherei1 and i2 are the two subtrees ofe being
compared. This is detected byis XNOR in line 2 of Fig. 3.
Further assume that neither input only depends onC. Recall
that for XNORs the algorithm sets the input conditionshi1 =
y∧he∨y∧ le and li1 = y∧he∨y∧ le andhi2 = y∧he∨y∧ le
andli2 = y∧he∨y∧le using the output conditions and a single
indexing variabley solely introduced for that step. Intuitively,
the indexing variablesx0 and y enumerate the four possible

cases that can occur for the 2-bit XNOR. We now specify
which assignments correspond to the explicit instances.

Suppose the simulation result shows thati1 = F, i2 =
F, e = T. We choosex0 = T, and hencehe = T, le = F.
By further choosingy = F we receivehi1 = hi2 = F and
li1 = li2 = T, which corresponds to the input values. By
induction hypothesis there exists an assignment for the bexpr-
treei1 andi2. These two assignments and our assignment tox0

andy are merged and results in the full assignment required.
Notice thati1 andi2 use distinct base name for their variables
and neverx0 or y, so no conflicts can occur.

The other three possible cases are similar. If simulation
result shows thati1 = T, i2 = T, e = T, we choosex0 = T
andy = T. If it is i1 = F, i2 = T, e = F, we choosex0 = F
andy = F. Finally, if i1 = T, i2 = F, e = F, then we choose
x0 = F andy = T.

B. DAGs and multiple outputs

In the previous we assumed that we are given a bexpr-tree.
The algorithm can be extended to handle DAGs as follows.
Every fanout point is marked with a new variablev and the
graph is cut at these points. The algorithm is then run for each
resulting tree with distinct variables to guarantee independence
of indexing variables. Observe that in some casesv will be
an output, and in others an initial input. The resulting triplets
are merged as follows.

AssumeTo is a set of triplets computed by the algorithm,
where the output was previously a fanout pointv. W.l.o.g. let
vh and vl be two fresh, distinct variables used forh and l
respectively when running the algorithm.

Further assume thatTi is a set of triplets computed where
v is one of the initial inputs, i.e.v is a target variable. Let
(v, hv, lv) ∈ Ti be the triplet corresponding tov.

We then determineT ′
o by substitutingvh with hv and vl

with lv in every triplet ofTo. This disposes of the variablesvh

andvl . Additionally, due to the fact thathv and lv are mutex,
contradicting assignments forvh and vl are eliminated. The
union of all Ti and T ′

o for all cut points then represents the
set of all triplets needed for the desired relation.

This procedure is motivated by the fact that we want to
have the same value on every branch of a fanout. Coverage is
achieved with the same argument as before. The requirement
of using unique variables for each run guarantees that assign-
ments for the indexing variables can be chosen independently
and merged without conflicts.

Similarly, we can handle bexprs with multiple outputs.
We simply run the algorithm for each output independently.
For this we introduce a unique indexing variablexi

0 for
each output and require unique base namesnamei. This
ensures independence of the results and allows us to form
the conjunction of the relations, where coverage follows as
before.

V. EFFICIENT PREIMAGE IMPLEMENTATION

The algorithm in Fig. 3 produces a partitioned abstraction
relation, which allows early existential quantification tobe

used in the preimage computations explained in Section II-A.
We can, for example, use the technique described in [9]. But
we can do even better by exploiting the special form that our
relations have by virtue of how they are generated.

First, it is easy to show that the abstraction relationR[X , T]
generated by our algorithm can be written as a conjunction
S [X] ∧ T [X , T], where S [X] contains no target variables.
Terms inS [X] are generated by line 3, whenfreevars(e) ⊆ C,
or by the consistency requirement in line 19 of Fig. 3. The
conjunctT [X , T] has the form

∧

i

(hi [X] → ti) ∧ (li [X] → ti),

where ti ranges over the target variablesT , and no target
variable occurs in anyhi or li . We defineTi [X , ti] to be
(hi [X] → ti)∧ (li [X] → ti), so thatT [X , T] =

∧

i
Ti [X , ti].

The main theorem of this section shows how this structure
is exploited. We first introduce some notation. Given a guard
P , let F = freevars(P) and letI be the set of indicesi such
that ti ∈ F . Let R↓P =

∧

i∈I Ti . Intuitively, R↓P denotes
the part ofR that mentions the target variables inP . Note
that PR↓P = ∃F .R↓P ∧ P .

Theorem 2:Given a guardP and a relationR produced by
the algorithm in Fig. 3, defineD = S ∧

∧

i
hi ∧ li . Then:

PR =

D ∧ P if freevars(P) ∩ T = ∅
D ∧ li if P = ti
D ∧ hi if P = ti
D ∧ PR↓P otherwise

PR = D ∧ PR

BecauseD does not depend on the guardP , it can be
precomputed whenR is created and used for all guards in
the trajectory assertion to be transformed. By building hash
tables that mapti to hi and li , the two middle cases can be
computed very quickly. The fourth case, seen only rarely in
practice, can be optimized using quantification scheduling.

The remainder of this section is devoted to proving
the above theorem. First, given a relationR, we define
dom(R)[X] = ∃T . R[X , T]. Intuitively, dom(R) holds for
all valuations of the indexing variables that represent used, or
consistent, indexing cases.

The following lemma states thatdom(R) is equal to the
expressionD used in Theorem 2.

Lemma 1:dom(R) = S ∧
∧

i
hi ∧ li .

Proof: By definition,dom(R) = ∃T .R. Using the known
shape ofR, we expand this to∃T .S ∧

∧

i
Ti . SinceS does

not depend on the target variablesT , and eachTi depends
only on target variableti , we can push the quantifier inwards
to obtainS ∧

∧

i
∃ti .Ti . By eliminating the quantifier, this can

easily be shown to equalS ∧
∧

i
hi ∧ li .

The next lemma states that only the parts of a relation that
mention the target variables that occur in a guard need to be
included when computing the preimage.

Lemma 2:PR = dom(R) ∧ PR↓P .

Proof: First, we expressPR in a form that resembles the
goal. By definition,PR = ∃T .R∧P . Using the known shape
of R, this can be rewritten to∃T .S ∧ (

∧

i
Ti) ∧ P . We then

partition the variablesT into the ones that occur inP , U ,
and the rest of them,V, and also split the big conjunction
similarly, to obtain∃V.∃U .S ∧ (

∧

i 6∈I Ti) ∧ (
∧

i∈I Ti) ∧ P .
EachTi mentions only one target variable (namelyti), andS

does not mention any target variables, so the quantifiers can
be pushed inwards:S ∧ (∃V.

∧

i 6∈I Ti) ∧ ∃U .(
∧

i∈I Ti) ∧ P .
SoPR = S ∧(∃V.

∧

i 6∈I Ti)∧PR↓P by the definition ofR↓P .
Now consider the subformula∃V.

∧

i 6∈I Ti . Again, each
Ti mentions only target variableti , so the quantifier can be
pushed inwards to get

∧

i 6∈I ∃ti .Ti . It is easy to show that
∃ti .Ti = hi ∧ li , and so∃V.

∧

i 6∈I Ti =
∧

i 6∈I hi ∧ li . We use
this new equivalence to simplify the formula obtained earlier.
Hence,PR = S ∧ (

∧

i 6∈I hi ∧ li) ∧ PR↓P .
It remains to showS ∧ (

∧

i 6∈I hi ∧ li)∧PR↓P = dom(R)∧
PR↓P . We do this by proving implication in both directions.

Leftwards: According to Lemma 1, the right side can be
rewritten to S ∧ (

∧

i
hi ∧ li) ∧ PR↓P . This formula trivially

implies the left side, since the only difference is that the left
side contains fewer conjuncts.

Rightwards: Assume thatS ∧ (
∧

i 6∈I hi ∧ li)∧PR↓P holds.
For a moment, we focus on the fact that the subformulaPR↓P

holds, which, by definition, is equal to∃U .(
∧

i∈I Ti) ∧ P .
We can weaken this to the formula∃U .(

∧

i∈I Ti), and push
the quantifier inwards yielding

∧

i∈I ∃ti .Ti . This formula can
easily be shown to equal

∧

i∈I hi ∧ li .
Combining this formula with the original assumption results

in S ∧ (
∧

i
hi ∧ li) ∧ PR↓P . By Lemma 1, this is equal to

dom(R) ∧ PR↓P , which concludes the proof.
Theorem 2 can now be established using Lemmas 1 and

2. It is easy to show that if a guardP contains no target
variables, thenPR = PR = dom(R) ∧ P . This justifies the
first case of Theorem 2. For the second and third case of
Theorem 2, we only need to specialize Lemma 2 withP = tk
and P = tk. The fourth case follows immediately from the
lemmas. The identityPR = dom(R) ∧ PR is easily shown
using the definitions of the preimage operations.

One last observation allows us to improve the preim-
age calculations further. Notice that the expressionD =
dom(R) = ∃T .R[X , T] is present as a conjunct in every case.
As shown by Melham and Jones [7], the coverage condition
∀T .∃X . R[X , T] must be supplied as an environmental con-
straint in the STE run. In other words, we are only interested
in cases where this constraint is true. Since the formulaD

is implied by the constraint,D can safely be assumed to be
true, and hence removed from the formulas. This significantly
reduces the complexity of the preimage operations.

VI. EXPERIMENTAL RESULTS

We illustrate the use of our algorithm on three classes of
circuits; two that are traditional targets for the use of symbolic
indexing and one that illustrates the power of our algorithm
in applying abstraction in more subtle ways. All results were

obtained with BDD-based STE in the Forte [3] environment
on a 2 Gbyte laptop.

0

1

n

=

=

=

key

hit

M

Fig. 4. High-level model of CAM.

Our first example is a traditional content-addressable mem-
ory (CAM), as illustrated in Fig. 4. The verification we are
interested in is the behavior of thehit signal. It should be
high iff there is an entry in the CAM with the same content
as the key being presented. The specification function we use
is the obvious one: try matching the key against each entry
and take the disjunction of the results to yield thehit value.
More precisely, the specification function we use is

hit =
∨

i

(M[i] = key)

Fig. 5. Results for CAM verification.

We restricted the abstraction by declaring the key inputs to
be symbolic constants. With this formulation, in Fig. 5 we
show the time required for verifying a CAM of varying size
and number of entries. The time for running the verification
is split roughly in three equal parts: running the abstraction
algorithm, computing the preimages, and finally running the
STE verification. The results indicate that running time grows
linearly with the size of the CAM. Indeed, our algorithm
automatically generates the indexing suggested in [2], i.e., we
yield an indexing that previously had to be developed with
careful reasoning. It should be pointed out that this design
could not be verified for larger sizes without using symbolic
indexing: For BDD based verification, we ran out of memory;
for SAT based verification, the verification process timed out.

It is interesting to note that if we apply our algorithm to the
CAM specification but do not declare any symbolic constants,
we obtain a much finer grained symbolic indexing scheme.
For example, one case included in this finer indexing family

covers the case in which biti of the key is different from bit
i in every entry in the CAM. This input should lead to the hit
signal being low. Not only does this approach yield a symbolic
indexing scheme that is far less efficient, the STE verification
failed on our design due to over-abstraction. Effectively,we
obtained an X on the hit signal when we expected a 0. The
reason for this was that in our design the key input to the
CAM was protected by a (simulated) error correcting circuit.
This circuit needed all inputs to the key to be fully defined to
produce non-X outputs. In practice, it appears that such over-
abstractions are relatively easy to avoid, but more work in this
direction is clearly needed.

0
1

n

raddr

dout

Fig. 6. High-level model of memory.

Our second example is a read operation for a memory,
which is abstractly shown in Fig. 6. The specification function
essentially consists of the natural sequence of “if read-address
is i then return the content of addressi else try i + 1”.
In contrast, the implementation uses a decoder circuit, pre-
charged logic etc. to implement the read operation. Here,
we state that the read address should not be abstracted, but
kept fully symbolic. As can be seen in the graph in Fig. 7,
the run-time behaviour of the STE verification is exceedingly
good. A closer inspection of the symbolic indexing computed
reveals that it is virtually identical to the one suggested in [2].
Given that we did not need to provide any information except
stating that the address should be symbolic, this result clearly
demonstrates the efficiency and practicality of our approach.

Fig. 7. Results for memory read.

Our final example is a scheduler abstractly shown in Fig. 8.
Its functionality is to compute the address of the oldest entry
that is ready. Providing a specification function that actually
computes the oldest ready entry is fairly involved. However,
supplying a relation that checks that a proposed address is the

0

1

n

OldestReady

age rdy

valid

addr

Fig. 8. High-level model of scheduler.

oldest ready is much easier. Thus we write the specification
as a relation in terms of the symbolic constants: address~a and
its age~o. The complete specification relation is given by:

∨

i

~a = i ∧ rdy[i] ∧ age[i] = ~o ∧
∧

j 6=i

(

rdy[j] ∨ age[j] < ~o
)

In applying our algorithm, we state that~a and~o are symbolic
constants. In Fig. 9 we show data on the run-time behavior
of this verification effort, revealing that using this technique
realistically sized schedulers can be verified. It is worth
pointing out that trying to verify the same circuit without
symbolic indexing, i.e., with variables in every state holding
register and input, fails for circuits larger than 16 entries and
width of the age registers of at least 4. In other words, not even
a fairly trivial scheduler can be handled without abstraction. At
the same time, with the method of this paper, this verification
is completely straightforward and fully automatic.

Fig. 9. Results for scheduler verification.

VII. RELATED WORK

There is a rich and growing literature on automatic abstrac-
tion for model checking and verification. Some cornerstone
techniques arelocalization reduction[10], counterexample-
guided abstraction refinement[11], and predicate abstrac-
tion [12]. These and other methods have been extensively stud-
ied in the context of symbolic model-checking for hardware.
By contrast, the literature onautomaticabstraction for STE or
GSTE is rather thin.

One notable exception is the work of Tzoref and Grum-
berg [13] on abstraction refinement for STE. This addresses
the problem of over-abstraction in STE that manifests itself
in symbolic simulation by a node carryingX where the

consequent expects0 or 1. This is common with manually-
formulated assertions, usually because some input variable
node has not been driven by the antecedent [8]. A heuristic
algorithm is presented in [13] that assigns fresh, distinct
Boolean variables to input nodes in a clever way targeted at
eliminating theXs that make the model-checking run fail.

Roorda [14] presents a SAT-based method that assists
in manual abstraction refinement for STE. The algorithm
provides the user with hints for refining abstractions that
over-approximate circuit behaviour. For a given assertionand
circuit, Roorda’s algorithm finds a minimal set of extra circuit
inputs and an assignment of Booleans to them that will
eliminate Xs at relevant circuit outputs. The user can then
reformulate their assertion to drive these nodes with variables.

Both [13] and [14] are aimed at strengthening verification
properties by driving more inputs. This refines the abstraction
level of the specification to eliminateXs, but in contrast
with our work, does not in itself introduce complex, indexed
families of abstractions.

Finally, our algorithm bears a resemblance to the D-
algorithm [15] and other automatic test pattern generation
methods. Both work backwards through a combinational cir-
cuit finding ways in which outputs might be forced high or
low.

VIII. C ONCLUSION

The algorithm we presented in this paper is, to the best of
our knowledge, the first automatic abstraction algorithm for
STE that yields results equivalent to carefully hand-crafted
assertions. This has the potential to significantly increase the
use of this type of abstraction in STE-based verification.

Further improvement of our approach is planned. A fruitful
field for future research will be to examine how to best encode
the abstractions. That is, when should we reuse indexing
variables, and when should we introduce fresh ones? This
is particularly interesting when handling DAGs and multiple
outputs, and when examining SAT-based STE verification.
Some first results seem to indicate this type of abstraction does
not speed up SAT-based STE verification the same way that it
does BDD-based ones. Perhaps this is caused by an unsuitable
encoding, or some entirely new approach is needed. We intend
to investigate this issue much more thoroughly.

A second important research direction concentrates on how
to refine the abstraction our algorithm computes in case it over-
approximates the circuit function. In this paper, we introduced
a simple and somewhat crude solution by allowing users to
state that certain signals should not be abstracted. This is
a perfectly workable solution for many examples, but more
automatic abstraction refinement methods are needed to deploy
our approach more widely. Applying the algorithm presented
in [13], slightly modified so it can handle indexing, is one
promising option to consider.

Finally, another obvious extension will be to incorporate the
presented ideas into the GSTE algorithm [16]. We also intend
to apply our method to a much wider class of problems to

determine its strengths and weaknesses. We suspect this will
yield more insight into how to further enhance our approach.

ACKNOWLEDGMENTS

This research was conducted while Carl-Johan Seger was a
Visiting Fellow at Balliol College, Oxford University.

REFERENCES

[1] C.-J. H. Seger and R. E. Bryant, “Formal Verification by Symbolic
Evaluation of Partially-Ordered Trajectories,”Formal Methods in System
Design, vol. 6, no. 2, pp. 147–189, Mar. 1995.

[2] M. Pandey, R. Raimi, R. E. Bryant, and M. S. Abadir, “Formal Ver-
ification of Content Addressable Memories using Symbolic Trajectory
Evaluation,” inDesign Automation Conference. ACM Press, Jun. 1997,
pp. 167–172.

[3] C.-J. H. Seger, R. B. Jones, J. W. O’Leary, T. Melham, M. D. Aagaard,
C. Barrett, and D. Syme, “An Industrially Effective Environment for
Formal Hardware Verification,”IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 24, no. 9, pp. 1381–1405,
Sept. 2005.

[4] T. Schubert, “High Level Formal Verification of Next-Generation Micro-
processors,” inDAC’03: Proceedings of the 40th conference on design
automation. ACM Press, 2003, pp. 1–6.

[5] R. E. Bryant, “A Methodology for Hardware Verification Based on Logic
Simulation,”Journal of the ACM, vol. 38, no. 2, pp. 299–328, Apr. 1991.

[6] C.-T. Chou, “The Mathematical Foundation of Symbolic Trajectory
Evaluation,” in Computer Aided Verification, ser. LNCS, vol. 1633.
Springer-Verlag, 1999, pp. 196–207.

[7] T. F. Melham and R. B. Jones, “Abstraction by Symbolic Indexing Trans-
formations,” in Formal Methods in Computer-Aided Design: FMCAD
2002, ser. LNCS, vol. 2517. Springer-Verlag, 2002, pp. 1–18.

[8] R. B. Jones, J. W. O’Leary, C.-J. H. Seger, M. D. Aagaard, and
T. F. Melham, “Practical Formal Verification in Microprocessor Design,”
IEEE Design & Test of Computers, vol. 18, no. 4, pp. 16–25, Jul./Aug.
2001.

[9] P. Chauhan, E. M. Clarke, S. Jha, J. H. Kukula, T. R. Shiple, H. Veith,
and D. Wang, “Non-linear Quantification Scheduling in Image Computa-
tion,” in ICCAD ’01: Proceedings of the 2001 IEEE/ACM international
conference on Computer-aided design. IEEE Press, 2001, pp. 293–298.

[10] R. P. Kurshan,Computer Aided Verification of Coordinating Processes.
Princeton University Press, 1994.

[11] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
Guided Abstraction Refinement for Symbolic Model Checking,”J. ACM,
vol. 50, no. 5, pp. 752–794, 2003.

[12] S. Graf and H. Saidi, “Construction of Abstract State Graphs with PVS,”
in CAV’97, ser. LNCS, vol. 1254. Springer-Verlag, 1997, pp. 72–83.

[13] R. Tzoref and O. Grumberg, “Automatic refinement and vacuity detec-
tion for symbolic trajectory evaluation,” inComputer Aided Verifica-
tion, 18th International Conference: CAV 2006, ser. LNCS, vol. 4144.
Springer-Verlag, 2006, pp. 190–204.

[14] J.-W. Roorda and K. Claessen, “SAT-based Assistance inAbstraction
Refinement for Symbolic Trajectory Evaluation,” inComputer Aided
Verification, 18th International Conference: CAV 2006, ser. LNCS, vol.
4144. Springer-Verlag, 2006, pp. 175–189.

[15] J. P. Roth, “Diagnosis of Automata Failures: A Calculus and a Method,”
IBM Journal of Research and Development, vol. 10, pp. 278–291, Jul.
1966.

[16] J. Yang and C.-J. H. Seger, “Introduction to Generalized Symbolic
Trajectory Evaluation,”IEEE Trans. Very Large Scale Integr. Syst.,
vol. 11, no. 3, pp. 345–353, 2003.

