Automatic Abstraction in
Symbolic Trajectory Evaluation

Sara Adams, Magnus 8jk, Tom Melham Carl-Johan Seger
Oxford University Computing Laboratory Strategic CAD Labs, Intel Corporation
Oxford, OX1 3QD, England Hillsboro, OR 97124, USA
Email: {sara,magnus,melhgm@comlab.ox.ac.uk Email: carl.seger@intel.com

Abstract—Symbolic trajectory evaluation (STE) is a model checker. The abstractions are indexed symbolically by &aol
checking technology based on symbolic simulation over a lattice variables, and formulas of Boolean logic are computed to
of abstract state sets. The STE algorithm operates over families represent the resulting families of reachable abstrade sta
of these abstractions encoded by Boolean formulas, enabling ver- . . . . .. .
ification with many different abstraction cases in a single model- sets.. This mec_hanlsm, sometllmes Cal_'?d symbolic mdéxmg
checking run. This provides a flexible way to achieve partitioned Provides a flexible way to achieve partitioned data abstact
data abstraction. It is usually called ‘symbolic indexing’ and A typical example is a memory verification, in which an
is widely used in memory verification, but has seen relatively 1,-element memory is verified with an indexed family of

limited adoption elsewhere, primarily because users typically gpgtractions, one for each address at which some target data
have to create the right indexed family of abstractions manually. might be Ioc,ated

This work provides the first known algorithm that automatically ’ . . . )
computes these partitioned abstractions given a reference-rdel The abstractions in an indexed family can overlap in flex-
specification. Our experimental results show that this approach ible, though not quite arbitrary, ways. This representatio

not only simplifies memory verification, but also enables handling can also record interdependencies among node values, and
completely different designs fully automatically. so greatly increases the expressive power of specifications
for STE. In implementations, the formulas in the symbolic
layer may be manipulated using BDDs or other (usually semi-

Symbolic Trajectory Evaluation (STE) is a model checkinganonical) representations, and decided using SAT or BDDs.
technology based on symbolic simulation over a lattice of This abstraction machinery is controlled by the way in
abstract state sets [1]. STE provides a combination of abstrwhich a user writes properties for model checking. By cdrefu
tion and algorithmic efficiency for verification of memoriescoding of the property, the user can guide the symbolic
and datapath-dominated designs, and has tackled numergigsulation done during model-checking through the right
difficult industrial verification problems [2]-[4]. layers of the abstract state lattice to verify the propertthw

In the abstraction lattice at the heart of STE, each circuibntained complexity. A good illustration of success is the
node is assigned a value in the sfi,1,X}, with ‘X’ content-addressable memory verification done by Pandey and
representing an unknown or ‘don’t care’ value. An assigrnimegolleagues [2], in which a careful encoding of propertiesgi
of such values to every circuit node is an abstraction of a selogarithmic reduction in complexity.
of Boolean circuit states. It is abstract in the sense that itControlling abstraction manually in this way can be dif-
ambiguously stands for any one of a family of Boolean stafieult, especially if there are assumptions about the operat
sets, one for each replacement of evétyby O or 1. The ing environment of the verification. The property encoding
collection of all such abstractions forms a lattice, ordeby required for abstraction is often non-obvious and tricky to
the amount of information about node values. devise. This paper describes an automatic approach to STE

The STE model-checking algorithm uses three-valued cibstraction. We present an algorithm that computes an @tblex
cuit simulation [5] to compute a reachable abstract statérs family of abstractions from the specification to be verified.
this representation, comparing this to a specificationtemit The abstraction scheme is then encoded in the guards of
in a weak linear-time temporal logic. The algorithm is spacghe verification property using the indexing transformatio
efficient because it operates over abstractions of setsit#sst algorithm of Melham and Jones [7]. The result is an automatic
any parts of the circuit function not relevant to the speaifiin  abstraction method for STE, which requires little or no user
get ‘abstracted away’ t&X. Any correctness result verified inguidance. We illustrate the effectiveness of our methodh wit
this abstract model transfers over to the real, Boolean irafde verifications of a memory, a CAM, and a simple scheduler.
circuit states. Formally, there is a Galois connection leev
the three-valued model and the Boolean model of states [6]. Il. ABSTRACTION INSTE

On top of the abstraction lattice, STE provides a layer of Verification properties in STE are callddajectory asser-
symbolic representation whereby whole families of abstratonsand have the formd = C, where A andC are formulas
tions may be checked simultaneously in one run of the modela simple linear-time temporal logic. The intuition is tllae

I. INTRODUCTION



antecedenformula A describes some initial conditions of theModel-checking this with STE will simultaneously check fou
circuit inputs and states, and tlvensequentC specifies the cases, each with different but sometimes overlapping abstr
values expected on circuit nodes as a response. The atotitinos of the reachable states arising. Any property verified
propositions inA and C take the form P — n is 0’ or STE with a node set t& also holds when the node is eithier
‘P — n is 1’, where n is the name of a circuit node andor 1, so this assertion covers all input cases and is complete.
the guard P is a formula of propositional logic. The guard The advantage of this kind of abstraction is that it makes the
determines when the proposition is assertedPifis true, representation of sets of states more compact, so that BDD or
then the noden must have the value 0 (or 1 respectively)SAT computations in the model-checking are more tractable.
if P is false, then there is no such assertion andan have The reduction in the number of propositional variables can b
any value—including, for abstraction efficiency, the dordtee substantial in real applications.
value X. Antecedents and consequents are essentially jﬁ&st
conjunctions of these atomic propositions, possibly medifi "™
by the next-time temporal operatét. Melham and Jones [7] describe an algorithm by which
The guards in a trajectory assertion are all formulas #fjectory assertions can be transformed to introduce more
propositional logic over some set of variables; differenagis abstraction. Supposd = C'is an assertion. The algorithm
can share variables, but not all the variables need appearéflaces the guards i and C' with new propositional
every guard. For each assignment of truth-values to thd@smulas over a set of fresh variables in such a way that if
variables, the trajectory assertion collapses into a ptgpethe transformed assertion holds then so ddes- C.
verifiable by three-valued simulation, witks on all circuit ~ The algorithm takes as input a relation that specifies the
nodes not forced to 0 or 1 by the antecedent or the circ@pstraction scheme to be applied. For the three-input AND-
itself. Sets of reachable states are approximated by atistnia 9ate, one possible abstraction relation is
that assign a value if0, 1, X} to each circuit node. Given a (FTAT3) — ) A (21 AT3) — B2) A @)
trajectory assertion, STE simultaneously computes thelfam (FT A x2) — T3) A (21 A o) — (1 Ata Ats))
of all such three-valued simulations, one for each satigfyi ) ) )
assignment to the variables in the guards. The variablesz; and zo index the abstraction cases, and

Users control this partitioned abstraction mechanism € variables, #,, and; appear in the directly-formulated
appropriate selection of guards. The idea can be illugtratBo0l€an trajectory assertion (1). Using this relation, alfgo-

by the following trivial example. Consider a unit-delay AND "ithm will compute the encoded trajectory assertion (2).
gate with three input nodes, b, and ¢ and output node. The Melham-Jones algorithm works by taking certain

A verification that does not exploit the abstraction lattise Préimages of an assertion's guards under the suppliedaabstr
achieved by running STE on this trajectory assertion: tion relation. The relation takes the for®[X', 7], whereT

is a set oftarget variablesthat occur in the guards of = C

Indexing Transformations

{i —~ais0andt; —ais1and (they need not be all the variables) aatlis a set of fresh
{2 —>bisOandt; —»bis 1 and indexing variablesFor a given guard®, we define theveak
ts »cisOandtz +cisl (1) preimagePy andstrong preimageP® by:
=
N(f; VIa VI3 — ois0and t1 Aty Ats — ois 1) Pr[X] = 3T . R[X,T] A P[T]
This is just symbolic Boolean simulation. The antecedent PR[X] = PrlX] A —3T. R[X,T] A —P|[T]

attaches a distinct, unconstrained, propositional v&iab \\here37 denotes existential quantification over all the vari-
each input node. And the consequent asserts that the edpeci§ias in the sef . Intuitively, Pr[X] is true for all indicest

Boolean function of these variables appears on the outpiss allow P to hold, andP%[X] is true for all indicesY’ that
Note that all Boolean variables in STE appear in the guardgyce P to hold. Given an assertiod — C. the algorithm
the constants, b, andc are node names, not variables. applies the strong preimage to the guardsdirand the weak

STE's abstraction lattice lets us reduce the number gleinage to the guards . This weakens the verification
variables needed to verify this gate. The key observation é§sumptionsA by introducing Xs, while maintaining the

that if any one input is 0, then the output will be 0 regardlegrength of the verification requirements

of the other inputs. We can exploit this witlis to introduce t js 5 technical side-condition required for soundness of
abstraction in the mode.l-checklng run. For the‘AND gater,ahethe abstraction that the supplied relation satisfies therage

are four cases to check; we can enumerate or ln_de>.( these Wibngitionv7. 3. R[X, 7]. This ensures all the target variable
two variables, say1 andz,. We write the following: values are indexed. Coverage is a bit more tricky when there

T1 ATz — ais 0 and are environmental constraints on the verification [7].

x1 ATy — bis 0 and The indexing algorithm can be used on specifications that

T1 ANxg — cis 0 and @) specify timing delays, such as the AND-gate above, as well

r1 ANzy —aislandbislandcis 1 as purely combinational ones. There is no explicit represen
= tation of time in the indexing relation itself—sequential ST

N(ZTVZ3 —+ois0and 21 Axy — 0is 1) specifications normally use distinct variables in the gaastl



input nodes for the different time points of interest, sosthe

are just different target variables in the indexing relatio .si_mple_bp(e, h,1) =
if is_ VAR (e) then
t := bexpr2bdde)

o ) ) return (h — ¢) A (I — 1));
The core of the method in this paper is an algorithm th elseifis NOT(e) then

1
2
B. The Automatic Abstraction Method i
automatically computes abstractions for use with the imex 6. retun bp(strip_NOT(e), I, h):
transformation just described. The output of the algoritism 7. else// AND - Y
an abstraction relation of the kind illustrated by (3), thie2x 8 x := freshindex var();
gate relation of the previous section, but vastly more cemxpl 9 - o
and unintuitive for realistic examples. The practical Hérie
that a user does not have to invent the abstraction and niymuai
encode it into the trajectory assertion to be verified. 1

The algorithm takes as input specificationfor the circuit
to be verified, in the form of a Boolean expression that states
the required 1/0O function. This specification is typically a
component of the STE assertion to be verified, so in principle
our method need not require anything beyond the manually- - .
written properties that any verification needs. (But see t enerated in line 8 and occur mandl. The target variables

discussion of ‘symbolic constants’ below.) We work fromongmate from the_bexpr anld are introduced in line 3.
The algorithm is recursive over the structure ef the

specifications rather than circuits because they give aclefa ification b In the b hendig bl
erence model of the algorithm the circuit uses, unencurmer%?ec' ication bexpr. In the base case, whendiiea vanable,

by implementation detail [8]. Although the 1/O specificaitiot € abﬁtractloghrellgtlon jlfm|p|y sc:]lys th:; tT; tfxget vizejasbt
provided as input to our algorithm is purely combin:;xtionafruew eneven nolds andfaise Wnenevenolds. An invarian

the resulting abstraction relation is applicable to setjakn of thet_algonthm s tlhalh antsjh: nedvler bgth h(t).ld' FoFr. Nfl)T
circuits, for the reasons explained in the previous section operations, we simply reverseandi and continue. =inaty,

The algorithm is presented in Sections Ill and IV, WherfeOr a two-input AND operator, more work 'S needed. Both
.muts must be high whenevarholds, so we simply padsto

we al rove that the relation nerated meet the requi . oo
€ aiso prove that Ihe retations genera ed 1eet e TEQUITEE recursive calls in lines 10 and 11. But there are two ways
coverage condition by construction. In Section V we then

. TR . . 1 can be forced: either the first input or the second input has
describe several optimizations to the preimage calculatio . L . .
. . .. to be low. This choice is captured by creating a fresh index
done to transform trajectory assertions. Some of theseoixpl ~ . . . :
) . . variablez. It is used to select which of the inputs are going
the special form that our abstractions relations have tsra . . .
0 _be the decisive low signal. Note that we never require both
of how they are generated. We prove the correctness of the : : . .
Co inputs to be low in order to achieve a maximum abstraction.
most complex of these optimizations.

The experimental results in Section VI show that our method
handles both embedded memories—the classic target for man*
ual symbolic indexing—and the much less intuitive example
of a scheduler. The paper concludes with some discussion of

related work and our plans for future extensions. Ccl
Ys

I1l. COMPUTING ABSTRACTION RELATIONS Fig. 2. Example circuit to illustrate our algorithm.

. (e1,eq) := destructAND (e)
0. ry:=simplebp(es, h,IAx);
1. ry:=simplebp(es, h,INT);
2. return(rq Ara);

Fig. 1. Simple back-propagation algorithm.

_ The approach we take in computing an abstraction relationtg jjjystrate the algorithm, consider the circuit in Fig. 2.
is to use the structure of a specification function. Spedifica first assume we want to compute the abstraction relation for
we assume that we have been given a Boolean expression Gaa-case the output is high. In other words, we want to compute
structed using only two-input AND operators, NOT operatorg, family of abstract inputs that all yield an output of highdan

and named variables. We call this datatypbeaprfor short. hat cover all such inputs. The resulting abstraction ieeis
For the time being, we suppose the expression has a single

output and is tree-structured. (x1 — a) AN(TT — b) AeAd.

We introduce the algorithm by describing a simplified ver- . ) ) ,
sion, so we can convey the basic idea without too much det ﬂfcwt_lvely, the index variabler deC|d_es wh_ethem or_b has to
Consider the algorithm in Fig. 1. The functisimple bp takes € high, a”‘?' botte andd must be high. S|m|larly,_ it we Ce.l”
a bexpr for the specification and two BDDS,and |, that simple bp with h=F and|=T we get the abstraction relation
represent the conditions under which the output should be (z1 — @) A (21 — D) A (2277 — ©) A (T3 77 — d)
high or low, respectively. It computes a BDD representing
an abstraction relation by propagating conditions back#&ar We can combine the above two cases by calBirgple bp
through the circuit. The index variables of this relatiore arwith h=xz, and =z, wherez, is a fresh Boolean indexing



variable. In this combined case, we get The algorithm is recursive and takes a set of symbolic
B constant&, a bexpre, the high and low conditionis andl, and
(z30 — @) A (2179 — @) A (Tz g — b) A (1179 — b) A a base namaameused to create unique variables. It returns a
(ro — ¢) A (221 Tg — €) A (z0 — d) A (T2 T1 To — d). list of triples, where each triple consists of a Boolean fiorc
. o ) f over the symbolic constant$ and the generated indexing
There are several shortcomings of this simple algorithr thg, japles,y, and two Boolean functions denoting the cases in
make it inefficient. First, it builds a monolithic Boolean-ex,ynich  should be high or low, respectively. In Section V we

pression for the abstraction relation. But a partitioneldtien i show how this format leads to a very efficient algorithm
is often more feasible and easier to use. Second, the digorite,, computing the preimage operations needed for STE.
is very generous in using fresh Boolean variables. Third, by

recognizing only two-input AND gates, the algorithm will-es In more detail, on line 2-3, we deal with the two cases
sentially use a unary encoding, rather than a binary engodiithat the expression only depends on variables @ or e is
And by recognizing only conjunctions, the algorithm use8 target variable. For either case, we create a singletpletri
more Boolean variables than needed—for example, simpipresenting the partial relation.

recognizing XNOR gates can reduce the number of varlablesOn line 4, we test whether the last bexpr represents an

by a factor of two. Finally, the algorithm is sometimes tog<NOR gate or not. If yes, on line 5 we sort the two inputs

aggressive in computing the abstraction _relat|on. It |steqwto {he XNOR gate by their support so that if one input only
common that the user can select some signals not to be %aer

of the abstraction. Thus, the algorithm needs to be coettoll pends on variables @y it will be the first inputi, . If at least
when suchsymboI.iC conétantare present one of the inputs depends only on variableinwe do not

need to introduce any new indexing variables, but can simply
call bp recursively suitably modifying thén and | functions
given the value of the symbolic expression. If both inputs to

In Fig. 3, we provide a much improved algorithm thath® XNOR depend on target variables, then on line 10-11 we
tackles all of the shortcomings of the simple algorithm, ~ Create two case expressions and two new base names. The
case expressions are simply and z; for some variabler;

IV. IMPROVEDALGORITHM

created from thenameargument. On lines 12 and 13 we then
1.bp(C, e h,|,name = call bp re<_:ursive|y on ir_1put871 andis, with sgitable high a_nd
2. if freevars(e) C C OR is_VAR(e) then low functions and distinct base names. Finally, the union of
3. return {(bexpr2bdde),h,1)}; the two sets of triples returned is formed.
4. elseifis XNOR(e) then On lines 14-15 we deal with the case wheris a NOT
5. (i1,i2) = sortinp_args(.e); expression. Here we simply cdtip recursively switchingh
6. if freevars(iy) C C then andl.
7. ¢ := bexpr2bdd{;);
8. return bp(C,iz,hcVvIc,htVlc,name; Finally on lines 16-27 we deal with the case when the final
9. else operator ofe is an AND gate. On line 17, we traverse the
10. {x1,25} := get caseexprs(name,2); bexpr to find as large an AND gate as possible by calling the
11. {n1,m2} := make unique names(name,?2); routine find big_ands. This routine not only finds all inputs
12. return ( bp(C,i1,hazy V 1z, hoy V1zg, ny)U that are conjoined, it also separates the inputs into twaggp
13. bp(C, iz, hzy V1xg, hay Vizy,na) ); the ones that only depend on variable<imand those that do
14. elseifis_NOT(e) then not. The conjunction of the first group is formed in line 18,
15. return bp(C, strip_NOT(e), |, h, name; since they do not need indexing variables. Only a consigtenc
16. else// AND requirement, computed on line 19, is needed to make sure the
17. (cis,0inp9 := find_big_ands(e); assignment of the indexing variables does not contradiet th
18. ¢= A, cqs beXpr2bddc;); value of this expression. Technically, we are only requited
19. res :=if cis= 0 then () else{(c,h,F)}; add the implicatiorh — ¢, but rather than having a separate
20. cases := getaseexprs(namepinps); set of consistency requirements, we include the triplén, F)
21. if h=F then in the relation.
22. names := mksamenamesame |oinps); On line 20 we compute a set of mutually exclusive Boolean
23. else i . . ] expressions over some fresh indexing variables that will be
24. names .= m_lumque_names@ame loinps); used to encode which of the inputs should be set to low. On
25, foreac.rlb € OINps s € Cases n e.names line 21, we deal with a common special case that allows us
gg re{ﬁfn._rfs;su bp(C, b, h, IAsAC,n); to call bp recursively without new base names, thus greatly
: increase the sharing of indexing variables. Finally, oredin
25 and 26 we calbp recursively on every input expression

Fig. 3. Main back-propagation algorithm. modifying the low condition according to the case exprassio



A. Coverage the output conditions ardé. = T,l. = F. Observe that all

Although the intuition behind the algorithm is fairly singpl INPutsé; of the AND have to be true in the simulation and
it is critical to ensure that the trajectory assertions raftdJ- hi; = T,li; = F. Arbitrary values can be chosen for,
abstraction verify all of the cases that were verified by ey are only necessary for the case wherts false. Note
original assertions. We guarantee this by proving coveiagethat the variablesy are never used at any other point in
Theorem 1. Note that apart from indexing variabl&swe the algorithm due to the use of new, unique base names. An
also need to consider the symbolic constahtRecall thatt assignment for the remaining is determined as follows: By
are used to index different cases of assertionsZorwhile induction hypothesis there exists an assignment for therbex
the symbolic constant basically introduce some additional,tree of each inpu;. The algorithm guarantees that each input-
temporary target variables. For coverage we hence show tH&€ uses a unique set of variables by specifying a unique
for every assignment of target variables and symbolic @orist base name for the variables. Hence the assignments for each
we can find an indexing corresponding to it. inpgt tree, and our assignment fof, can be merged to an

Theorem 1 (Coverage)Given a Boolean expression repre@ssignment as required.
sented as a bexpr-tree let rl = bp(C, e, xy, Tg, name be the Ib. Now supposecis = (, but the simulation result of
result of the algorithm in Fig. 3, whereameis chosen to ¢ iS false. We chooser, = F, and henceh. = F,I. =T.

ensure that none of the generated variables are caljetf ~ Observe that at least one inpit of the AND has to be
false in the simulation, w.l.o.gi; = F. The algorithm speci-

Rx.Cc,T)= N\ (h—e)r(i—a), fies thath;, = I. = F and;, = case;[V] Al.. We choose a
(e;hili)€rt variable assignment fop)) such thatcase; = T and hence
thenV7T .¥C.3X. R[X,C,T]. case; =F Vj # 1.

Proof: Let the target variablesT and the symbolic By induction hypothesis there exists a variable assignment
constantsC be arbitrary, but fixed. Then we can simulate théor the input tree ofi; as required. It does not includg, so
bexpr-tree. That is, we can determine all input and outpthie variable assignment can be merged with our assignment
values of each constructor ef In particular, the simulation to ). Observe that for all other inputs;, =1;, = F, j # 1.
result ofe and the values of all consequentsin the relation But the algorithm forms newvh,,, l;, using conjunction with
R[X,C,T] are known. By induction on the depth of the hout,lous ONly, SO we can deduce that dill on the input
bexpr-treee we show that there exists a variable assignmetigees ofi;, j # 1 will be false throughout, in particular at the
for X such that terminating points,, included in the relation. This means that

all variable assignments, and in particular the one choeen f
vn. ((en =F) = (hy =F))A((en =T) = (I, =F)) (4) i1, satisfy (4) trigially. P
ThenR[X,C,T] =T as required. Ic. Next supposeis # () andec = A, . sci is false. Then
Base case: The only bexprtree ¢ of depth 0 at least one of the concrete inputs is false, and accordingly
is a single variablet. In this case the relation isthe simulation output is false. Hence we choage= F and
R[X,C,T] = (zg — t) A (Tg — t). Property (4) is satisfied receiveh. = F. The extra requirement. — c is therefore

by choosingz, = t. trivially satisfied. Also notice that in this case we need not
Inductive stepSuppose that for all bexpr-trees of deptht  force any other inputs to be low, i.&, = F for all j. So the

there is a variable assignment such that (4) holds. indexing variablesy can be chosen arbitrarily with the same
We examine the last constructor of the bexpr-trexf depth reasoning as in la.

k + 1 and determine an assignment for the variakemtro- Id. Finally supposecis # @ and ¢ = A caisCi IS true.

duced by the algorithm for that constructor. W.l.0.g. assunThen the extra requiremerit, — c is trivially satisfied. If
the last constructor is an AND or a NOT that completes ghe simulation output is true, we choosg = T and ) can
XNOR. In both cases assume at least one input depends dpeachosen arbitrarily as seen in la. If the simulation output
variable not inC—otherwise, no new indexing variables ardalse, we choose, = F. Given that we know that the concrete
introduced and the induction hypothesis provides the requi inputs are all true this means the indexing has to force one
variable assignment fo&’. We consider the two constructorof the remaining inputs to be false. As seen in Ib, w.l.o.g.
cases, AND and NOT, in | and Il below. we choose) such thatcase; = T and use the induction
I. Suppose the last constructor is AND. We analy$erther hypothesis to complete the variable assignment.
to extract all consecutive AND constructors, resulting in a Il. Now suppose the last constructor is a NOT that completes
multiple input AND of maximal size, which is achieved byan XNOR, wherei; andi, are the two subtrees of being
find_big_andsin line 17 of Fig. 3. We will now determine compared. This is detected lisz XNORin line 2 of Fig. 3.
a variable assignment as desired depending on the simulatifurther assume that neither input only depend<CoRecall
result ofe. For this we split the inputs of the AND gate intothat for XNORs the algorithm sets the input conditidns =
two groups:cis, which only depend on variables & andi;, yAh.VyAl. andl;, =75Ah.VHAl. andh;, = yAh. VHAL
which depend on some indexing variables. andl;, = yAh.VyAl,. using the output conditions and a single
la. First supposecis = (). Further suppose the simu-indexing variabley solely introduced for that step. Intuitively,
lation result of e is true. We choosery = T, and hence the indexing variables, andy enumerate the four possible



cases that can occur for the 2-bit XNOR. We now specifysed in the preimage computations explained in Section II-A
which assignments correspond to the explicit instances. We can, for example, use the technique described in [9]. But
Suppose the simulation result shows that= F,i, = we can do even better by exploiting the special form that our
F,e = T. We choosexy =T, and henceh, = T,l. = F. relations have by virtue of how they are generated.
By further choosingy = F we receiveh;, = h;, = F and First, it is easy to show that the abstraction relatijry’, 7]
l;, =1, = T, which corresponds to the input values. Byenerated by our algorithm can be written as a conjunction
induction hypothesis there exists an assignment for therbexS[X] A T[X,T], where S[X] contains no target variables.
treed; andi,. These two assignments and our assignmeng to Terms inS[X] are generated by line 3, whereevars(e) C C,
andy are merged and results in the full assignment requireor by the consistency requirement in line 19 of Fig. 3. The
Notice thati; andi, use distinct base name for their variablesonjunct 7[X, 7] has the form
and neverz, or y, so no conflicts can occur. -
The other three possible cases are similar. If simulation ANl X] = ) A (11[X] — &),
result shows that; = T,i, = T,e = T, we choosery =T @
andy = T. Ifitis iy = F,i = T,e = F, we choosero =F  where ¢; ranges over the target variabl&s, and no target
andy = F. Finally, if i, =T, i, = F,e = F, then we choose yariable occurs in any; or I,. We defineT;[X,t;] to be
zo =Fandy =T. B (n[X] — ) A (14[X] — 1), so thatT[X, T = A\, Ts[X, ti].
The main theorem of this section shows how this structure

i ) is exploited. We first introduce some notation. Given a guard
In the previous we assumed that we are given a bexpr-trqfe’. let F = freevars(P) and letZ be the set of indices such

The algorithm can be extended to handle DAGs as foIIovvl?]att, € F.Let R|P = \,_, T;. Intuitively, R| P denotes
. . . . 1 . iE 7" y

Every fanout point is marked with a new variableand the he hart of R that mentions the target variables in Note

graph is cut at these points. The algorithm is then run foheag, ¢ Prip = 3F.R|P A P.

resulting tree with distinct variables to guarantee indelg®ce 1 o0rem 2:Given a guardP and a relation® produced by
of indexing variables. Observe that in some casesill be the algorithm in Fig. 3, defind = S A A. h; Al,. Then:
an output, and in others an initial input. The resultingl&ip ' ! ’

B. DAGs and multiple outputs

are merged as follows. DAP if freevars(P)NT =10
AssumeT, is a set of triplets computed by the algorithm, DAy if P=t,

where the output was previously a fanout paintV.l.o.g. let L DAhD; if P=t¢,

vp and vy be two fresh, distinct variables used forand | DA Prp otherwise

respectively when running the algorithm. L
Further assume thaf; is a set of triplets computed where ~ P® = DA Pp

v is one of the initial inputs, i.ev is a target variable. Let

(v,hy,1,) € T} be the triplet corresponding ta BecauseD does not depend on the guafd, it can be

We then determing” by substitutingv, with h, and v precomputed wherR is created and used for all guards in
with I, in every triplet of7,,. This disposes of the variables the trajectory assertion to be transformed. By buildinghhas
andv;. Additionally, due to the fact that, andl, are mutex, tables that mag; to h; andl;, the two middle cases can be
contradicting assignments faf, and v, are eliminated. The computed very quickly. The fourth case, seen only rarely in
union of all 7; and 7", for all cut points then represents thePractice, can be optimized using quantification scheduling
set of all triplets needed for the desired relation. The remainder of this section is devoted to proving

This procedure is motivated by the fact that we want the above theorem. First, given a relatid®, we define
have the same value on every branch of a fanout. Coveragél@n(R)[X] = 37. R[X,T]. Intuitively, dom(R) holds for
achieved with the same argument as before. The requiremalhivaluations of the indexing variables that representiuse
of using unique variables for each run guarantees thatmssi§onsistent, indexing cases.
ments for the indexing variables can be chosen independent| The following lemma states thatom(R) is equal to the
and merged without conflicts. expressionD used in Theorem 2.

Similarly, we can handle bexprs with multiple outputs. Lemma 1:dom(R) =S A A;h; Al
We simply run the algorithm for each output independently.  Proof: By definition, dom(R) = 37 . R. Using the known
For this we introduce a unique indexing variabtg for shape ofR, we expand this tai7.S A A\, T;. Since S does
each output and require unique base namesne’. This not depend on the target variabl@s and eachl; depends
ensures independence of the results and allows us to fopmly on target variablé;, we can push the quantifier inwards
the conjunction of the relations, where coverage follows 48 obtainS A A, 3t;.T;. By eliminating the quantifier, this can
before. easily be shown to equal A A; h; A ;. O

The next lemma states that only the parts of a relation that
V. EFFICIENT PREIMAGE IMPLEMENTATION mention the target variables that occur in a guard need to be

The algorithm in Fig. 3 produces a partitioned abstractiancluded when computing the preimage.

relation, which allows early existential quantification hbe Lemma 2: Pr = dom(R) A Pr,p.



Proof: First, we expres$’z in a form that resembles the obtained with BDD-based STE in the Forte [3] environment

goal. By definition,Pr = 37 .R A P. Using the known shape on a 2 Gbyte laptop.
of R, this can be rewritten t&7.5 A (A\; T3) A P. We then
partition the variablesI” into the ones that occur i®, U,
and the rest of them), and also split the big conjunction
similarly, to obtain3V.3U.S A (N;gz Ti) A (Niez Ti) N P
EachT; mentions only one target variable (namely, and S
does not mention any target variables, so the quantifiers can
be pushed inwards$ A (3V. A,z Ti) A FU(N;e7 Ti) A P.
SoPr = SA(IV. N,y Ti) N Pry p by the definition of?| P. : _

Now consider the subformul@V. A\, ., Ti. Again, each Fig. 4. High-level model of CAM.

T; mentions only target variablg, so the quantifier can be ) ) -
pushed inwards to gef\,, 3t:.T:. It is easy to show that Our first example is a traditional content-addressable mem-
3.7, =, AT,, and so3V. /\iﬂ T, = /\iﬂm_ We use O (CAM), as illustrated in Fig. 4. The verification we are

this new equivalence to simplify the formula obtained eauli mtergsted in-1s the beha_wor of thieit S|'gnal. It should be
Hence, Py = 5 A (A,ug My AL) A Prip high iff there is an entry in the CAM with the same content
R igz i M :

. as the key being presented. The specification function we use

Itremains to ShOWS A (Aigz i Ali) A Ppip = dom(R) 1\ e ovions one: try matching the key against each entry
Prp. We do this by proving implication in both directions. o voe the disjunction of the results to yield thie value.

Leftwards: According to Lemma 1, the right S'de. can bq\/lore precisely, the specification function we use is
rewritten to S A (A, h; Al;) A Prip. This formula trivially
implies the left side, since the only difference is that teg | hit = \/ (M[i] = key)
side contains fewer conjuncts. i

Rightwards: Assume thatS A (/\z'ezz h, Al;) A Pryp holds.
For a moment, we focus on the fact that the subforniiap
holds, which, by definition, is equal t&l/.(A\,.; T3) A P.
We can weaken this to the formuli/.(A, ., T:), and push
the quantifier inwards yielding\iez 3t;.T;. This formula can
easily be shown to equa\,_, h; Al;.

Combining this formula with the original assumption result Time
in S A(A;hiAl;) A Pgip. By Lemma 1, this is equal to
dom(R) A Pryp, Which concludes the proof. O

Theorem 2 can now be established using Lemmas 1 and
2. It is easy to show that if a guar®® contains no target Key width B
variables, thenPr = P = dom(R) A P. This justifies the
first case of Theorem 2. For the second and third case of
Theorem 2, we only need to specialize Lemma 2 with- ¢,
and P = t;. The fourth case follows immediately from the
lemmas. The identity?® = dom(R) A P is easily shown
using the definitions of the preimage operations.

hit

Nbr entries

Fig. 5. Results for CAM verification.

We restricted the abstraction by declaring the key inputs to
0 | b ) I . h . be symbolic constants. With this formulation, in Fig. 5 we
ne last observation allows us to improve the preimg, . ihe time required for verifying a CAM of varying size

de ?ICBISSPnRs);u;Ehgr. Notice that the_ exp_ress@n ~ and number of entries. The time for running the verification
om(R) = 3T.R[X, T]is present as a conjunctin every Casqs it roughly in three equal parts: running the abstracti

@;‘, sﬂh;w]r% g/y;/lelham t?nd Jor;gsd [7], the coverage Colnd't'%'l]gorithm, computing the preimages, and finally running the
-3X. B[, 7] must be supplied as an environmenta COTSTE verification. The results indicate that running timevgso

straint in the STE run. In other words, we are only interestqg]early with the size of the CAM. Indeed, our algorithm

n _caslgs dvxl;herﬁ this constraint is trufe.l Stl)nce the fo(;nml‘; automatically generates the indexing suggested in [2],Wwe
is implied by the constraintD can safely be assumed to ield an indexing that previously had to be developed with

true, and hence removed from the formulas. This signifigan areful reasoning. It should be pointed out that this design

reduces the complexity of the preimage operations. could not be verified for larger sizes without using symbolic
indexing: For BDD based verification, we ran out of memory;
for SAT based verification, the verification process timed ou
We illustrate the use of our algorithm on three classes of It is interesting to note that if we apply our algorithm to the
circuits; two that are traditional targets for the use of sglic CAM specification but do not declare any symbolic constants,
indexing and one that illustrates the power of our algorithmve obtain a much finer grained symbolic indexing scheme.
in applying abstraction in more subtle ways. All results &verFor example, one case included in this finer indexing family

VI. EXPERIMENTAL RESULTS



covers the case in which bitof the key is different from bit age rdy

i in every entry in the CAM. This input should lead to the hit 0= T O—=

signal being low. Not only does this approach yield a symboli 1T " Gigestready] valid
indexing scheme that is far less efficient, the STE veriftcati . 1 o addr
failec_J on our design du_e to over-abstraction. Effectivels n EIIIZEDDj_—:

obtained an X on the hit signal when we expected a 0. The

reason for this was that in our design the key input to the
CAM was protected by a (simulated) error correcting circuit
This circuit needed all inputs to the key to be fully defined to

produce non-X outputs. In practice, it appears that such-ovg|qest ready is much easier. Thus we write the specification
abstractions are relatively easy to avoid, but more workig t 55 3 relation in terms of the symbolic constants: addfemsd
direction is clearly needed. its aged. The complete specification relation is given by:

Fig. 8.  High-level model of scheduler.

raddr
\/ | @=inrdyli] Aagdi] =5 J\ (rdy[j] V agdj] < 5)
0 NY i i
(T~ - TTH—=
(T~ - - TT—= [ ithm, 0 i
1 : dout In applying our algorithm, we state thdtand o are symbolic

: constants. In Fig. 9 we show data on the run-time behavior
NI - - TT— of this verification effort, revealing that using this tedure
realistically sized schedulers can be verified. It is worth
pointing out that trying to verify the same circuit without
mbolic indexing, i.e., with variables in every state hiotd
gister and input, fails for circuits larger than 16 ergrand

Fig. 6.  High-level model of memory.

Our second example is a read operation for a memo

which is abstractly shown in Fig. 6. The specification fuoati width of the age registers of at least 4. In other words, nenev
essentially consists of the natural sequence of "if reatfes a fairly trivial scheduler can be handled without absti@ttiAt

is ¢ then return the content of addresselse tryi + 1”. : . . : .
’ . . yut L the same time, with the method of this paper, this verificatio
In contrast, the implementation uses a decoder circuit; pre

charged logic etc. to implement the read operation. Herjgycompletely straightforward and fully automatic.
we state that the read address should not be abstracted, but
kept fully symbolic. As can be seen in the graph in Fig. 7,
the run-time behaviour of the STE verification is exceeding|
good. A closer inspection of the symbolic indexing computed
reveals that it is virtually identical to the one suggeste?i.

Given that we did not need to provide any information except Time
stating that the address should be symboalic, this resudtrigie
demonstrates the efficiency and practicality of our apgnoac

8 Age width

Fig. 9. Results for scheduler verification.
Time

Gl
VII. RELATED WORK

There is a rich and growing literature on automatic abstrac-
tion for model checking and verification. Some cornerstone
techniques ardocalization reduction[10], counterexample-
guided abstraction refinemerjiL1], and predicate abstrac-
tion [12]. These and other methods have been extensively stud-

Fig. 7. Results for memory read. ied in the context of symbolic model-checking for hardware.
By contrast, the literature oautomaticabstraction for STE or

Our final example is a scheduler abstractly shown in Fig. &STE is rather thin.

Its functionality is to compute the address of the oldestyent One notable exception is the work of Tzoref and Grum-
that is ready. Providing a specification function that altyua berg [13] on abstraction refinement for STE. This addresses
computes the oldest ready entry is fairly involved. Howevethe problem of over-abstraction in STE that manifests fitsel
supplying a relation that checks that a proposed addresgisiin symbolic simulation by a node carryingd where the

Width {bits)




consequent expects or 1. This is common with manually- determine its strengths and weaknesses. We suspect this wil
formulated assertions, usually because some input variagield more insight into how to further enhance our approach.
node has not been driven by the antecedent [8]. A heuristic
algorithm is presented in [13] that assigns fresh, distinct
Boolean variables to input nodes in a clever way targeted atThis research was conducted while Carl-Johan Seger was a
eliminating theXs that make the model-checking run fail. Visiting Fellow at Balliol College, Oxford University.

. Roorda [14] pre;ents a SAT-based method that a_ssists REFERENCES

in manual abstraction refinement for STE. The algorithm ) . _
provides th_e user _With hints _for refining _abStraCtion_S tha{l] E;/-;I.u:tioﬁf)?ga?t?gly?(.)rﬁérggy '?'?atl}ec'igrrirggﬁl)r\rfiarllfll\igilr?gdsb?/n gﬂgm
over-approximate circuit behaviour. For a given assertiod Design vol. 6, no. 2, pp. 147-189, Mar. 1995.

circuit, Roorda’s algorithm finds a minimal set of extra citc [2] M. Pandey, R. Raimi, R. E. Bryant, and M. S. Abadir, “Formary
inputs and an assignment of Booleans (o them that will 1o21on of Content Addrssable wemores using Symbol ey,
eliminate Xs at relevant circuit outputs. The user can then pp. 167-172.

reformulate their assertion to drive these nodes with em  [3] C.-J. H. Seger, R. B. Jones, J. W. O'Leary, T. Melham, M. Rgaard,

. . - C. Barrett, and D. Syme, “An Industrially Effective Environmefor
Both [13] and [14] are aimed at strengthenmg verification Formal Hardware Verification,JEEE Transactions on Computer-Aided

ACKNOWLEDGMENTS

properties by driving more inputs. This refines the absimact Design of Integrated Circuits and Systemwsl. 24, no. 9, pp. 1381-1405,
level of the specification to eliminat&s, but in contrast Sept. 2005. - o

ith K d t in itself introd | ind d[4] T. Schubert, “High Level Formal Verification of Next-Gemaéion Micro-
WIth our work, does not In Itselr introduce complex, Inaexe processors,” irDAC’'03: Proceedings of the 40th conference on design

families of abstractions. automation ACM Press, 2003, pp. 1-6.

; - [5] R. E.Bryant, “A Methodology for Hardware Verification Bed on Logic
Fm.a"y’ our algorithm  bears a. resemblance to the D Simulation,”Journal of the ACMvol. 38, no. 2, pp. 299-328, Apr. 1991.
algorithm [15] and other automatic test pattern generatiofy; c.-T. chou, “The Mathematical Foundation of Symbolic Eetpry

methods. Both work backwards through a combinational cir- Evaluation,” in Computer Aided Verificationser. LNCS, vol. 1633.

it findi ; ; ; i Springer-Verlag, 1999, pp. 196-207.
cuit finding ways in which outputs might be forced high Or[7] T. F. Melham and R. B. Jones, “Abstraction by Symbolic Ixidg Trans-

low. formations,” in Formal Methods in Computer-Aided Design: FMCAD
2002 ser. LNCS, vol. 2517. Springer-Verlag, 2002, pp. 1-18.

[8] R. B. Jones, J. W. O'Leary, C.-J. H. Seger, M. D. Aagaardd a
T. F. Melham, “Practical Formal Verification in Microproces&esign,”

The algorithm we presented in this paper is, to the best of o= De¥9" & Test of Computgrsol. 18, no. 4, pp. 16-25, Jul./Aug.

our knowledge, the first automatic abstraction algorithm fo[9] p. Chauhan, E. M. Clarke, S. Jha, J. H. Kukula, T. R. ShigleVeith,
STE that yields results equivalent to carefully hand-e@ft and D-V:/gg%;Ngg-lgeaf anmiﬁc?tiﬁ" zsggle?é'é"éggma@ﬂ@ma' |
. . . A . tion,” in '01: Proceedings of the international
assemon_s' This has the pqtenpal to S|gn|f|cantly _'nm.em conference on Computer-aided desigiEEE Press, 2001, pp. 293-298.
use of this type of abstraction in STE-based verification. [10] R. P. KurshanComputer Aided Verification of Coordinating Processes
Further improvement of our approach is planned. A fruitfyl _ Princeton University Press, 1994.
field for f P h will b PP . hp b 11] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Carakample-
Ield tor Utur_e researc V_V' e to examine how to eSt_enCO_ € Guided Abstraction Refinement for Symbolic Model CheckidgACM
the abstractions. That is, when should we reuse indexing vol. 50, no. 5, pp. 752-794, 2003.

variables. and when should we introduce fresh ones? THhigl S. Grafand H. Saidi, “Construction of Abstract State@hs with PVS,”
' in CAV'97, ser. LNCS, vol. 1254. Springer-Verlag, 1997, pp. 72-83.

is particularly interesting when handling DAGs and mukipl 13 r. Tzoref and O. Grumberg, “Automatic refinement and vacditec-

outputs, and when examining SAT-based STE verification. tion for symbolic trajectory evaluation,” it€Computer Aided Verifica-

Some first results seem to indicate this type of abstractomsd tion‘, 18th International Conference: CAV 2Q0&er. LNCS, vol. 4144.
[ .. Springer-Verlag, 2006, pp. 190-204.

not speed up SAT-based STE verification the same way thaltlg J.-W. Roorda and K. Claessen, “SAT-based Assistanc&bistraction

does BDD-based ones. Perhaps this is caused by an unsuitableRefinement for Symbolic Trajectory Evaluation,” @omputer Aided

encodlng or some entlrely new approach |S needed. We Intend Ver|f|Cat|On, 18th International Conference: CAV 20%( LNCS, vol.
' 4144. Springer-Verlag, 2006, pp. 175-189.

to investigate this issue much more thoroughly. [15] J. P. Roth, “Diagnosis of Automata Failures: A Calculusla Method,”
A second important research direction concentrates on how IBM Journal of Research and Developmewtl. 10, pp. 278-291, Jul.
to reﬂn? the abStraqtlon our algorlthm C.ompUteS n C.aseet-ov[m] i?igng and C.-J. H. Seger, “Introduction to GeneraliZzgymbolic
approximates the circuit function. In this paper, we introeid Trajectory Evaluation,”IEEE Trans. Very Large Scale Integr. Syst.
a simple and somewhat crude solution by allowing users to vol. 11, no. 3, pp. 345-353, 2003.
state that certain signals should not be abstracted. This is
a perfectly workable solution for many examples, but more
automatic abstraction refinement methods are needed toydepl
our approach more widely. Applying the algorithm presented
in [13], slightly modified so it can handle indexing, is one
promising option to consider.
Finally, another obvious extension will be to incorpordte t
presented ideas into the GSTE algorithm [16]. We also intend
to apply our method to a much wider class of problems to

VIIl. CONCLUSION



