Universality for Timed Automata with Minimal Resources

Sara E. Adams, University of Oxford

Joint work with Joël Ouaknine and James Worrell

5 April, 2007

<ロ> <同> <同> < 回> < 回>

Overview

- Timed Automata
- Universality Problem
 - Known results
 - Our main result
 - Structure of the proof

<ロ> <同> <同> < 回> < 回>

Motivation

Verification of real-time systems

Essential role of language inclusion

e.g. "Implementation \subseteq Specification"

Special case of language inclusion

U: set of all timed words $U \subseteq L \Rightarrow U = L$ and L is universal Universality undecidable \Rightarrow language inclusion undecidable

< ロ > < 同 > < 回 > < 回 >

Concept of a timed automaton

Sara E. Adams, University of Oxford

・ロト ・回ト ・ヨト ・ヨト Universality for Timed Automata with Minimal Resources

Concept of a timed automaton

Clock x

Universality for Timed Automata with Minimal Resources

・ロト ・回ト ・ヨト ・ヨト

Timed Automata Universality Problem

Concept of a timed automaton

Universality for Timed Automata with Minimal Resources

Known results Our main result Structure of the proof

Universality Problem

Does a given automaton accept every timed word?

Alur and Dill, 1994 [1]

Universality is undecidable for timed automata with two clocks.

Ouaknine and Worrell, 2004 [2]

Universality is decidable for:

timed automata with one clock;

timed automata with comparisons to 0 only.

・ロン ・回 と ・ヨン ・ヨン

Known results Our main result Structure of the proof

Main result

Adams, Ouaknine, Worrell, 2006

Universality is undecidable for timed automata with one state, one event and comparisons to 0 and 1 only.

No restriction on the number of clocks

Else: only finitely many timed automata left - trivially decidable

Sara E. Adams, University of Oxford Universality for Timed Automata with Minimal Resources

・ロン ・回 と ・ヨン ・ヨン

Known results Our main result Structure of the proof

Structure of the proof

Basic steps

1. Universality for Flat Timed Automata

Sara E. Adams, University of Oxford Universality for Timed Automata with Minimal Resources

Known results Our main result Structure of the proof

Structure of the proof

Basic steps

- 1. Universality for Flat Timed Automata
- 2. Decomposition of Flat Timed Automata

Sara E. Adams, University of Oxford Universality for Timed Automata with Minimal Resources

Known results Our main result Structure of the proof

Structure of the proof

Basic steps

- 1. Universality for Flat Timed Automata
- 2. Decomposition of Flat Timed Automata
- 3. Transformation of Linear Flat Timed Automata

Known results Our main result Structure of the proof

Structure of the proof

Basic steps

- 1. Universality for Flat Timed Automata
- 2. Decomposition of Flat Timed Automata
- 3. Transformation of Linear Flat Timed Automata
- 4. Union of transformed automata

Known results Our main result Structure of the proof

Details

sara.adams@comlab.ox.ac.uk

http://web.comlab.ox.ac.uk/oucl/work/sara.adams/

- Rajeev Alur and David L. Dill, A Theory of Timed Automata, Theoretical Computer Science 126-2, 1994
- [2] Joël Ouaknine and James Worrell, On the Language Inclusion Problem for Timed Automata: Closing a Decidability Gap, Logic in Computer Science, 2004