Universality for Timed Automata with Minimal Resources

Sara E. Adams

in collaboration with
Joël Ouaknine and James Worrell

University of Oxford

FORMATS 2007
Concept of a timed automaton

\(\phi \)?

reset(\(R_C \))

FSM
An example timed automaton

\[a, x := 0 \rightarrow a \]

\[x = 1?, a \rightarrow a \]
Motivation

Why universality?

Special case of language inclusion
- All timed words $\subseteq L \Rightarrow L$ universal
- Universality undecidable \Rightarrow language inclusion undecidable

Why language inclusion?

Verification of real-time systems
- Essential role of language inclusion
- e.g. “Implementation \subseteq Specification”
Motivation

Decidability

Undecidability

Resources

Adams, Ouaknine, Worrell (Oxford Univ.)
Universality for Timed Automata
FORMATS 2007
Universality Problem

Does a given automaton accept every timed word?

Alur and Dill, 1994
Universality is undecidable for timed automata with two clocks.

Ouaknine and Worrell, 2004
Universality is decidable for timed automata with one clock.
Universality is undecidable for timed automata with one state, one event and comparisons to

- weakly monotonic: 0 and 1 only.
- strongly monotonic: 1, 2, and 3 only.

\[\phi\{0,1,2,3\}, \cdot, R_C \]
Minimal resources

Obviously minimal
- essentially stateless
- essentially alphabetless

Further observations
- comparisons to 0 only: decidable
- restrictions on number of clocks: decidable
Structure of the proof

Basic steps

1. Universality for linear safety automata
Structure of the proof

Basic steps

1. Universality for linear safety automata
2. Decomposition of linear safety automata
3. Transformation of decomposed timed automata
4. Union of transformed automata
Structure of the proof

Basic steps

1. Universality for linear safety automata
2. Decomposition of linear safety automata
3. Transformation of decomposed timed automata
4. Union of transformed automata
Structure of the proof

Basic steps

1. Universality for linear safety automata
2. Decomposition of linear safety automata
3. Transformation of decomposed timed automata
4. Union of transformed automata
Universality Proof: 2-counter machines

\[\text{FSM} \]

\[?0 \quad \text{inc, dec} \]
Weakly monotonic time: 2-counter machine encoding

Task

- Accept any inconsistent encoding of a halting computation
- Automaton universal \iff 2-counter machine does not halt

![Diagram showing the interaction between counters and automaton states](image)
Weakly monotonic time: Converting to one symbol

Simultaneous events
Encode alphabet symbols with simultaneous events

Change of time model
before: strongly monotonic encoding
after: weakly monotonic encoding
Weakly monotonic time: Converting to one state

Clocks
For every state introduce a separate clock

Rule
Use predicates to encode states:
- Reset state clock on state transition

Essentials
- Linearity of automata
- On inconsistency: predicate that ensures acceptance
Strongly monotonic time: 2-counter machine encoding

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cannot use simultaneous events to encode alphabet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution</td>
<td>Use only one symbol in the 2-counter machine encoding</td>
</tr>
<tr>
<td>Price</td>
<td>Use 3 time units for each configuration:</td>
</tr>
<tr>
<td></td>
<td>1st time unit: encode the state</td>
</tr>
<tr>
<td></td>
<td>2nd time unit: encode the 1st counter</td>
</tr>
<tr>
<td></td>
<td>3rd time unit: encode the 2nd counter</td>
</tr>
</tbody>
</table>
Summing up

Universality is undecidable for timed automata with

- a single state,
- a single event, and
- clock comparisons to
 - weakly monotonic: 0 and 1 only.
 - strongly monotonic: 1, 2, and 3 only.
Open questions

Weakly monotonic time
Is universality undecidable for timed automata with:
one state, one event, and comparisons to 1 only?

Strongly monotonic time
Is universality undecidable for timed automata with:
one state, one event, and comparisons to one or two constants only?