Universality for Timed Automata with Minimal Resources

Sara E. Adams

in collaboration with Joël Ouaknine and James Worrell

University of Oxford

FORMATS 2007

Adams, Ouaknine, Worrell (Oxford Univ.) Universality for Timed Automata

Concept of a timed automaton

An example timed automaton

Why universality?

Special case of language inclusion

- All timed words $\subseteq L \Rightarrow L$ universal
- Universality undecidable \Rightarrow language inclusion undecidable

Why language inclusion?

Verification of real-time systems

- Essential role of language inclusion
- e.g. "Implementation \subseteq Specification"

Motivation

Does a given automaton accept every timed word?

Alur and Dill, 1994

Universality is undecidable for timed automata with two clocks.

Ouaknine and Worrell, 2004

Universality is decidable for timed automata with one clock.

Adams, Ouaknine, Worrell

Universality is undecidable for timed automata with one state, one event and comparisons to

- weakly monotonic: 0 and 1 only.
- strongly monotonic: 1, 2, and 3 only.

Obviously minimal

- essentially stateless
- essentially alphabetless

Further observations

- comparisons to 0 only: decidable
- restrictions on number of clocks: decidable

Basic steps

1. Universality for linear safety automata

Adams, Ouaknine, Worrell (Oxford Univ.)

Universality for Timed Automata

Basic steps

- 1. Universality for linear safety automata
- 2. Decomposition of linear safety automata

Adams, Ouaknine, Worrell (Oxford Univ.)

Basic steps

- 1. Universality for linear safety automata
- 2. Decomposition of linear safety automata
- 3. Transformation of decomposed timed automata

Basic steps

- 1. Universality for linear safety automata
- 2. Decomposition of linear safety automata
- 3. Transformation of decomposed timed automata
- 4. Union of transformed automata

Adams, Ouaknine, Worrell (Oxford Univ.)

Universality for Timed Automata

Universality Proof: 2-counter machines

Weakly monotonic time: 2-counter machine encoding

Task

- Accept any inconsistent encoding of a halting computation
- Automaton universal ⇔ 2-counter machine does not halt

Weakly monotonic time: Converting to one symbol

Simultaneous events

Encode alphabet symbols with simultaneous events

Change of time model

before: strongly monotonic encoding after: weakly monotonic encoding

Weakly monotonic time: Converting to one state

Clocks

For every state introduce a seperate clock

Rule

Use predicates to encode states:

• Reset state clock on state transition

Essentials

- Linearity of automata
- On inconsistency: predicate that ensures acceptance

Strongly monotonic time: 2-counter machine encoding

Problem

Cannot use simultaneous events to encode alphabet

Solution

Use only one symbol in the 2-counter machine encoding

Price

Use 3 time units for each configuration:

- 1st time unit: encode the state
- 2nd time unit: encode the 1st counter
- 3rd time unit: encode the 2nd counter

Universality is undecidable for timed automata with

- a single state,
- a single event, and
- clock comparisons to
 - weakly monotonic: 0 and 1 only.
 - strongly monotonic: 1, 2, and 3 only.

Weakly monotonic time

Is universality undecidable for timed automata with: one state, one event, and comparisons to 1 only?

Strongly monotonic time

Is universality undecidable for timed automata with: one state, one event, and comparisons to one or two constants only?